Виды солнечных батарей: сравнительный обзор конструкций и советы по выбору панелей
Альтернативная энергетика максимально развивается в Европе, показывая результатами свою перспективность. Появляются новые виды солнечных батарей, повышается их КПД.
При желании обеспечить работу промышленного здания или жилого помещения за счет энергии солнца, необходимо предварительно узнать об отличиях оборудования, понять, какие солнечные панели подходят под климатические условия определенного региона.
Мы поможем разобраться в этом вопросе. В статье рассмотрен принцип работы фотоэлектрических преобразователей, приведен обзор разных видов солнечных батарей с указанием их характеристик, преимуществ и недостатков. Ознакомившись с материалом, вы сможете сделать правильный выбор для обустройства эффективной гелиосистемы.
Принцип работы солнечных панелей
Подавляющее большинство солнечных панелей являются в физическом смысле фотоэлектрическими преобразователями. Электрогенерирующий эффект возникает в месте полупроводникового p-n перехода.
Именно кремниевые пластины составляют основу себестоимости солнечных панелей, но при их использовании в качестве круглосуточного источника электроэнергии придется дополнительно купить дорогостоящие аккумуляторные батареи
Панель состоит из двух кремниевых пластин с различными свойствами. Под действием света в одной из них возникает недостаток электронов, а в другой – их избыток. Каждая пластина имеет токоотводящие полоски из меди, которые подсоединяются к преобразователям напряжения.
Промышленная солнечная панель состоит из множества ламинированных фотоэлектрических ячеек, скрепленных между собой и закрепленных на гибкой или жесткой подложке.
КПД оборудования зависит во многом от чистоты кремния и ориентации его кристаллов. Именно эти параметры пытаются улучшить инженеры последние десятилетия. Основной проблемой при этом является высокая стоимость процессов, которые лежат в основе очищения кремния и расположения кристаллов в одном направлении на всей панели.
Ежегодно максимальные КПД различных солнечных панелей изменяются в большую сторону, потому что в исследования новых фотогальванических материалов вкладываются миллиарды долларов (+)
Полупроводники фотоэлектрических преобразователей могут изготавливаться не только из кремния, но и из других материалов — принцип работы батареи при этом не изменяется.
Типы фотоэлектрических преобразователей
Классифицируют промышленные солнечные панели по их конструкционным особенностям и типу рабочего фотоэлектрического слоя.
Различают такие виды батарей по типу устройства:
- гибкие панели;
- жесткие модули.
Гибкие тонкопленочные панели постепенно занимают всё большую нишу на рынке благодаря своей монтажной универсальности, ведь установить их можно на большинстве поверхностей с разнообразными архитектурными формами.
Реальные характеристики солнечных панелей обычно ниже, чем указанные в инструкции. Поэтому перед их установкой дома желательно самому увидеть похожий реализованный проект
По типу рабочего фотоэлектрического слоя солнечные батареи разделяются на такие разновидности:
- Кремниевые: монокристаллические, поликристаллические, аморфные.
- Теллурий-кадмиевые.
- На основе селенида индия- меди-галлия.
- Полимерные.
- Органические.
- На основе арсенида галлия.
- Комбинированные и многослойные.
Интерес для широкого потребителя представляют не все типы солнечных панелей, а только лишь первые два кристаллических подвида.
Хотя некоторые другие типы панелей и имеют большие КПД, но из-за высокой стоимости они не получили широкого распространения.
Галерея изображений
Монокристаллические панели легко угадать по белым квадратикам в уголках отдельных элементов
Поликристаллические панели рекомендуется ориентировать на восток и запад, а для южной стороны лучше приобрести монокристаллический модуль
Тонкопленочные солнечные панели популярны при изготовлении портативных туристических солнечных батарей
Солнечные панели с содержанием индия активно используются на космических спутниках
Мышьяк в солнечных батареях с арсенидом галлия становится токсичным только при прямом контакте с водой
Солнечные панели из редких металлов могут быть изготовлены любых размеров и формы
Органические солнечные панели пока что недоступны для массового потребителя из-за недостаточной испытанности технологии
Полимерные солнечные батареи имеют низкий КПД, поэтому распространения пока не получили
Массив монокристаллических солнечных фотоэлементов
Солнечная панель на основе поликристаллов кремния
Солнечная панель в виде пленки
Фотогальванические элементы из селенида индия-меди-галлия
Фотоэлемент на основе арсенида галлия
Солнечные панели со слоем теллурида кадмия
Производство органических солнечных панелей
Солнечная батарея из полиэфира
Кремниевые фотоэлектрические элементы довольно чувствительны к нагреву. Базовая температура для измерения электрогенерации составляет 25°C. При её повышении на один градус эффективность панелей снижается на 0,45-0,5%.
Далее будут подробно рассмотрены солнечные панели, которые представляют наибольший потребительский интерес.
Характеристики панелей на основе кремния
Кремний для солнечных батарей изготавливают из кварцевого порошка — размолотых кристаллов кварца. Богатейшие залежи сырья есть в Западной Сибири и Среднем Урале, поэтому перспективы данного направления солнечной энергетики практически безграничны.
Даже сейчас кристаллические и аморфные кремниевые панели занимают уже более 80% рынка. Поэтому стоит рассмотреть их более подробно.
Монокристаллические кремниевые панели
Современные монокристаллические кремниевые пластины (mono-Si) имеют равномерный темно-синий цвет по всей поверхности. Для их производства используется наиболее чистый кремний. Монокристаллические фотоэлементы среди всех кремниевых пластин имеют самую высокую цену, но обеспечивают и наилучший КПД.
Большие монокристаллические солнечные панели с поворотными механизмами идеально вписываются в пустынные пейзажи. Там обеспечиваются условия для максимальной производительности
Высокая стоимость производства обусловлена сложностью ориентации всех кристаллов кремния в одном направлении. Из-за таких физических свойств рабочего слоя максимальный КПД обеспечивается только лишь при перпендикулярном падении солнечных лучей на поверхность пластины.
Монокристаллические батареи требуют дополнительного оборудования, которое автоматически поворачивает их в течение дня, чтобы плоскость панелей была максимально перпендикулярна солнечным лучам.
Слои кремния с односторонне ориентированными кристаллами вырезаются из цилиндрического бруска металла, поэтому готовые фотоэлектрические блоки имеют вид закруглённого по углам квадрата.
К преимуществам монокристаллических кремниевых батарей относят:
- Высокий КПД со значением 17-25%.
- Компактность — меньшая площадь размещения оборудования из расчета на единицу мощности, в сравнении с поликристаллическими кремниевыми панелями.
- Долговечность — достаточная эффективность генерации электроэнергии обеспечивается до 25 лет.
Недостатков у таких батарей всего два:
- Высокая стоимость и длительная окупаемость.
- Чувствительность к загрязнению. Пыль рассеивает свет, поэтому у покрытых ею солнечных панелей резко снижается КПД.
Из-за потребности в прямых солнечных лучах монокристаллические солнечные панели устанавливаются в основном на открытых площадках или на высоте. Чем ближе местность к экватору и чем больше в ней солнечных дней, тем более предпочтительна установка именно этого типа фотоэлектрических элементов.
Поликристаллические солнечные батареи
Поликристаллические кремниевые панели (multi-Si) имеют неравномерный по интенсивности синий окрас из-за разносторонней ориентированности кристаллов. Чистота кремния, используемого при их производстве, несколько ниже, чем у монокристаллических аналогов.
Разнонаправленность кристаллов обеспечивает высокий КПД при рассеянном свете – 12-18%. Он ниже, чем в однонаправленных кристаллах, но в условиях пасмурной погоды такие панели оказываются более эффективны.
Неоднородность материала приводит и к снижению себестоимости производства кремния. Очищенный металл для поликристаллических солнечных панелей без особых ухищрений заливается в формы.
На производстве используются специальные технические приемы для формирования кристаллов, однако их направленность не контролируется. После остывания кремний нарезают слоями и обрабатывают по специальному алгоритму.
Поликристаллические панели не требуют постоянной ориентации в сторону солнца, поэтому для их размещения активно используются крыши домов и промышленных зданий.
Днем при легкой облачности преимуществ солнечных панелей из аморфного кремния заметно не будет, их достоинства раскрываются только при плотных тучах или в тени (+)
К достоинствам солнечных батарей с разнонаправленными кристаллами относят:
- Высокая эффективность в условиях рассеянного света.
- Возможность стационарного монтажа на крышах зданий.
- Меньшая стоимость по сравнению с монокристаллическими панелями.
- Длительность эксплуатации — падение эффективности через 20 лет эксплуатации составляет всего 15-20%.
Недостатки у поликристаллических панелей также имеются:
- Пониженный КПД со значением 12-18%.
- Относительная громоздкость — требуется больше пространства для установки из расчета на единицу мощности в сравнении с монокристаллическими аналогами.
Поликристаллические солнечные панели завоевывают всё большую рыночную долю среди других кремниевых батарей. Это обеспечивается широкими потенциальными возможностями для удешевления стоимости их производства. Ежегодно увеличивается и КПД таких панелей, стремительно приближаясь к 20% у массовых продуктов.
Солнечные панели из аморфного кремния
Механизм производства солнечных панелей из аморфного кремния принципиально отличается от изготовления кристаллических фотоэлектрических элементов. Здесь используется не чистый неметалл, а его гидрид, горячие пары которого осаждаются на подложку.
В результате такой технологии классические кристаллы не образуются, а затраты на производство резко снижаются.
Фотоэлементы из осажденного аморфного кремния можно закреплять как на гибкой полимерной подложке, так и на жестком стеклянном листе
На данный момент существует уже три поколения панелей из аморфного кремния, в каждом из которых заметно повышается КПД. Если первые фотоэлектрические модули имели эффективность 4-5%, то сейчас на рынке массово продаются модели второго поколения с КПД 8-9%.
Аморфные панели последней разработки имеют эффективность до 12% и уже начинают появляться в продаже, но они пока ещё достаточно дорогие.
За счет особенностей данной производственной технологии, создать слой кремния можно как на жесткой, так и на гибкой подложке. Из-за этого модули из аморфного кремния активно используются в гибких тонкоплёночных солнечных модулях. Но варианты с эластичной подложкой стоят намного дороже.
Физико-химическая структура аморфного кремния позволяет максимально поглощать фотоны слабого рассеянного света для генерации электроэнергии. Поэтому такие панели удобны для применения в северных районах с большими свободными площадями.
Не снижается эффективность батарей на основе аморфного кремния и при высокой температуре, хотя они и уступают по этому параметру панелям из арсенида галлия.
При одинаковой стоимости оборудования солнечные панели из гидрида кремния показывают большую производительность, чем их моно- и поликристаллические аналоги (+)
Подытоживая, можно указать такие преимущества аморфных солнечных панелей:
- Универсальность — возможность изготовления гибких и тонких панелей, монтаж батарей на любые архитектурные формы.
- Высокий КПД при рассеянном свете.
- Стабильная работа при высоких температурах.
- Простота и надежность конструкции. Такие панели практически не ломаются.
- Сохранение работоспособности в сложных условиях — меньшее падение производительности при запыленности поверхности, чем у кристаллических аналогов
Срок службы таких фотоэлектрических элементов, начиная со второго поколения, составляет 20-25 лет при падении мощности в 15-20%. К недостаткам панелей из аморфного кремния можно отнести лишь потребность в бо́льших площадях для размещения оборудования требуемой мощности.
Обзор бескремниевых устройств
Некоторые солнечные панели, изготовленные с применением редких и дорогостоящих металлов, имеют КПД более 30%. Они в разы дороже своих кремниевых аналогов, но всё-таки заняли высокотехнологичную торговую нишу, благодаря своим особенным характеристикам.
Солнечные панели из редких металлов
Существует несколько типов солнечных панелей из редких металлов, и не все они имеют КПД выше, чем у монокристаллических кремниевых модулей.
Однако способность работать в экстремальных условиях позволяет производителям таких солнечных панелей выпускать конкурентоспособную продукцию и проводить дальнейшие исследования.
Панели из теллурида кадмия активно используются при облицовке зданий в экваториальных и аравийских странах, где их поверхность нагревается днем до 70-80 градусов
Основными сплавами, применяемыми для изготовления фотоэлектрических элементов, являются теллурид кадмия (CdTe), селенид индия- меди-галлия (CIGS) и селенид индия-меди (CIS).
Кадмий – токсический металл, а индий, галлий и теллур являются довольно редкими и дорогостоящими, поэтому массовое производство солнечных панелей на их основе даже теоретически невозможно.
КПД таких панелей находится на уровне 25-35%, хотя в исключительных случаях может доходить до 40%. Ранее их применяли в основном в космической отрасли, а сейчас появилось новое перспективное направление.
Из-за стабильной работы фотоэлементов из редких металлов при температурах 130-150°C их используют в солнечных тепловых электростанциях. При этом лучи солнца от десятков или сотен зеркал концентрируются на небольшой панели, которая одновременно генерирует электроэнергию и обеспечивает передачу тепловой энергии водяному теплообменнику.
В результате нагрева воды образуется пар, который заставляет вращаться турбину и генерировать электроэнергию. Таким образом солнечная энергия преобразуется в электрическую одновременно двумя путями с максимальной эффективностью.
Полимерные и органические аналоги
Фотоэлектрические модули на основе органических и полимерных соединений начали разрабатывать только в последнем десятилетии, но исследователи уже добились значительных успехов. Наибольший прогресс демонстрирует европейская компания Heliatek, которая уже оснастила органическими солнечными панелями несколько высотных зданий.
Толщина её рулонной пленочной конструкции типа HeliaFilm составляет всего 1 мм.
При производстве полимерных панелей используются такие вещества, как углеродные фуллерены, фталоцианин меди, полифенилен и другие. КПД таких фотоэлементов уже достигает 14-15%, а стоимость производства в разы меньше, чем кристаллических солнечных панелей.
Остро стоит вопрос срока деградации органического рабочего слоя. Пока что достоверно подтвердить уровень его КПД через несколько лет эксплуатации не представляется возможным.
Преимуществами органических солнечных панелей являются:
- возможность экологически безопасной утилизации;
- дешевизна производства;
- гибкая конструкция.
К недостаткам таких фотоэлементов можно отнести относительно низкий КПД и отсутствие достоверной информации о сроках стабильной работы панелей. Возможно, что через 5-10 лет все минусы органических солнечных фотоэлементов исчезнут, и они станут серьезными конкурентами для кремниевых пластин.
Какую солнечную панель выбрать?
Выбор солнечных панелей для загородных домов на широте 45-60° не труден. Здесь стоит рассматривать лишь два варианта: поликристаллические и монокристаллические кремниевые панели.
При дефиците места предпочтение лучше отдать более эффективным моделям с односторонней ориентацией кристаллов, при неограниченной площади рекомендуется приобрести поликристаллические батареи.
Ориентироваться на прогнозы аналитических компаний развития рынка солнечных панелей не стоит, ведь лучшие их образцы, возможно, ещё не изобретены
Выбирать конкретного производителя, требуемую мощность и дополнительное оборудование лучше при участии менеджеров компаний, занимающихся продажей и установкой такого оборудования. Следует знать, что качество и цена фотоэлектрических модулей у крупнейших производителей отличаются мало.
Следует учитывать, что при заказе комплекта оборудования «под ключ», стоимость самих солнечных панелей будет составлять всего лишь 30-40% от общей суммы. Сроки окупаемости таких проектов составляют 5-10 лет, и зависят от уровня энергопотребления и возможности продажи излишков электроэнергии в городскую сеть.
Некоторые мастера предпочитают собирать солнечные батареи собственноручно. На нашем сайте есть статьи с подробным описанием технологии изготовления таких панелей, их подключению и обустройству отопительных гелиосистем .
- Как сделать солнечную батарею своими руками: инструктаж по самостоятельной сборке
- Солнечные системы отопления: разбор технологий обустройства отопления на базе гелиосистем
- Схема подключения солнечных батарей: к контроллеру, к аккумулятору и обслуживаемым системам
Выводы и полезное видео по теме
Представленные видеоролики показывают работу различных солнечных панелей в реальных условиях. Также они помогут разобраться в вопросах выбора сопутствующего оборудования.
Правила выбора солнечных панелей и сопутствующего оборудования:
Виды солнечных панелей:
Тестирование монокристаллической и поликристаллической панелей:
Для населения и небольших промышленных объектов реальной альтернативы кристаллическим кремниевым панелям пока что нет. Но темпы разработки новых типов солнечных батарей позволяют надеяться, что скоро энергия солнца станет главным источником электроэнергии во многих загородных домах.
Всем заинтересованным в вопросе выбора и использования солнечных батарей предлагаем оставлять комментарии, задавать вопросы и участвовать в обсуждениях. Форма для связи расположена в нижнем блоке.
Монокристаллические ячейки для солнечных батарей
Все серийные солнечные фотомодули изготавливаются из кремниевых пластин. И это вполне логично. Дело в том, что кремний – не просто самый распространенный p-n проводник. Он еще и довольно дешев и прост в обработке, технологические процессы с его участием тщательно изучены, поэтому организовать производство кремниевых пластин не составляет труда.
Конечно, существуют материалы и сплавы, которые гораздо эффективнее преобразуют солнечную энергию, чем силикаты, но их производство (особенно в промышленных масштабах) обойдется гораздо дороже. Поэтому сегодня наиболее популярными по-прежнему остаются поли- и монокристаллические солнечные батареи на основе кремния.
Фотобатареи на монокристаллах широко используются и в бытовых, и в промышленных солнечных станциях. Более того, именно такие ячейки (правда, значительно усовершенствованные) применяются в космической сфере, на искусственных спутниках, орбитальных станциях и т.д. Используются эти изделия и для энергообеспечения морских кораблей, особенно рассчитанных на дальние плавания.
Особенности структуры солнечных монокристаллов
Монокристаллы кремния имеют множество отличительных черт, и, пожалуй, самой заметной является их насыщенный синий цвет при абсолютно однородной поверхности. Такой оттенок, как и равномерность поверхности, объясняется строгой кристаллографической структурой материала. Кроме того, для солнечных модулей из монокремния характерна особая, псевдоквадратная, форма со скругленными углами. Дело в том, что при выращивании монокристаллов образуются цилиндрические заготовки, поэтому после обработки и резки пластины принимают такой оригинальный вид.
Эффективность фотопреобразований
Все серийные солнечные фотомодули изготавливаются из кремниевых пластин. И это вполне логично. Дело в том, что кремний – не просто самый распространенный p-n проводник. Он еще и довольно дешев и прост в обработке, технологические процессы с его участием тщательно изучены, поэтому организовать производство кремниевых пластин не составляет труда.
Конечно, существуют материалы и сплавы, которые гораздо эффективнее преобразуют солнечную энергию, чем силикаты, но их производство (особенно в промышленных масштабах) обойдется гораздо дороже. Поэтому сегодня наиболее популярными по-прежнему остаются поли- и монокристаллические солнечные батареи на основе кремния.
Фотобатареи на монокристаллах широко используются и в бытовых, и в промышленных солнечных станциях. Более того, именно такие ячейки (правда, значительно усовершенствованные) применяются в космической сфере, на искусственных спутниках, орбитальных станциях и т.д. Используются эти изделия и для энергообеспечения морских кораблей, особенно рассчитанных на дальние плавания.
Особенности структуры солнечных монокристаллов
Монокристаллы кремния имеют множество отличительных черт, и, пожалуй, самой заметной является их насыщенный синий цвет при абсолютно однородной поверхности. Такой оттенок, как и равномерность поверхности, объясняется строгой кристаллографической структурой материала. Кроме того, для солнечных модулей из монокремния характерна особая, псевдоквадратная, форма со скругленными углами. Дело в том, что при выращивании монокристаллов образуются цилиндрические заготовки, поэтому после обработки и резки пластины принимают такой оригинальный вид.
Эффективность фотопреобразований
Именно солнечные элементы на монокристаллах имеют наибольший КПД среди всех кремниевых пластин. Объясняется это очень просто. Поскольку ячейка имеет однородную структуру, лучи солнца равномерно освещают всю ее поверхность. Также равномерно они преобразуются в электроток, не рассеиваясь на кристаллических неровностях. Иными словами, эффективность такой ячейки зависит только от свойств самого кристалла, она не снижается из-за побочных отражений лучей (как это происходит в полипластинах).
Такая особенность позволяет делать солнечные моноячейки более компактными, а значит, и уменьшить итоговые габариты собираемых из них батарей.
Преимущества эксплуатации
Монокристаллические солнечные панели не только продуктивнее полибатарей. Они также имеют несколько весомых эксплуатационных преимуществ:
- Возможность установки на криволинейных поверхностях. Монопанели имеют гибкую структуру, способную выдержать небольшой изгиб без потери качества фотопреобразований. Поэтому их можно монтировать там, где поликристаллические модули расположить невозможно.
- Равномерная работа в различных погодных условиях. Многие считают, что в пасмурную погоду производительность монокристаллических ячеек резко падает, тогда как поликристаллы работают практически с той же эффективностью. Когда-то это действительно было так, но с развитием технологий ситуация кардинально изменилась. Сегодня КПД монопанелей при затемнении не уменьшается, а значит, по этому показателю они вновь превосходят поликристаллические аналоги.
- Эффективная работа при минусовых температурах и сильных морозах. Именно монокристаллическими ячейками укомплектованы все солнечные батареи, рассчитанные на зимнюю эксплуатацию.
По сути, единственным недостатком таких панелей является их более высокая, по сравнению с поликристаллами, стоимость. Однако разница эта на самом деле не так велика (порядка 10%), а с учетом большей производительности она фактически неощутима.
Специфика производства
Технология производства монокристаллических солнечных панелей отлажена довольно давно. Отправной точкой служит получение высокочистого технического кремния (массовая доля – порядка 99,99%). Затем осуществляется плавление сырья при высоких температурах, с последующим синтезом при введении разного рода добавок. Добавки используются для повышения производительности фотоячеек и улучшения их эксплуатационных свойств.
Однородные монокристаллы выращиваются в специальных, постоянно вращающихся, тиглях. Такое вращение необходимо для формирования строгой кристаллографической структуры. Готовые технологические слитки монокремния имеют округлую цилиндрическую форму, поэтому их обычно обрабатывают для придания формы псведоквадратной призмы с нужной площадью сечения. Затем слитки при помощи алмазных пил нарезаются на тонкие пластины, которые тщательно очищаются от следов суспензии. На финальном этапе выполняется строгий контроль внешних дефектов и фотоэлектрических параметров. И если пластина соответствует всем стандартам, ее используют для создания солнечных фотобатарей.
Таким образом, на сегодняшний день именно монокристаллические кремниевые ячейки являются наиболее перспективным направлением развития серийных солнечных батарей.
Источник https://sovet-ingenera.com/eco-energy/sun/vidy-solnechnyx-batarej.html
Источник https://solarb.ru/monokristallicheskie-yachejki-dlya-solnechnyh-batarej