Автономная энергосистема на солнечных батареях — как рассчитать?

Солнечная электростанция на дом 200 м2 своими руками

Частенько в сети проскакивают сообщения о борьбе за экологию, развитие альтернативных источников энергии. Иногда даже проводят репортажи о том, как в заброшенной деревне сделали солнечную электростанцию, чтобы местные жители могли пользоваться благами цивилизации не 2-3 часа в сутки, пока работает генератор, а постоянно. Но это всё как-то далеко от нашей жизни, поэтому я решил на своем примере показать и рассказать, как устроена и как работает солнечная электростанция для частного дома. Расскажу обо всех этапах: от идеи до включения всех приборов, а также поделюсь опытом эксплуатации. Статья получится немаленькая, поэтому кто не любит много букв могут посмотреть ролик. Там я постарался рассказать то же самое, но будет видно, как я все это сам собираю.

Исходные данные: частный дом площадью около 200 м2 подключен к электросетям. Трехфазный ввод, суммарной мощностью 15 кВт. В доме стандартный набор электроприборов: холодильник, телевизоры, компьютеры, стиральные и посудомоечные машинки и так далее. Стабильностью электросеть не отличается: зафиксированный мною рекорд — отключение 6 дней подряд на период от 2 до 8 часов.

Что хочется получить: забыть о перебоях электроэнергии и пользоваться электричеством, невзирая ни на что.

Какие могут быть бонусы: Максимально использовать энергию солнца, чтобы дом приоритетно питался солнечной энергией, а недостаток добирал из сети. Как бонус, после принятия закона о продаже частными лицами электроэнергии в сеть, начать компенсировать часть своих затрат, продавая излишки выработки в общую электросеть.

С чего начать?

Всегда есть минимум два пути для решения любой задачи: учиться самому или поручить решение задачи кому-то другому. Первый вариант предполагает изучение теоретических материалов, чтение форумов, общение с владельцами солнечных электростанций, борьбу с внутренне жабой и, наконец, покупку оборудования, а после — установку. Второй вариант: позвонить в специализированную фирму, где зададут много вопросов, подберут и продадут нужное оборудование, а могут и установить за отдельные деньги. Я решил совместить эти два способа. Отчасти потому что мне это интересно, а отчасти для того, чтобы не напороться на продавцов, которым надо просто заработать, продав не совсем то, что мне нужно. Теперь пришло время теории, чтобы понять, как я делал выбор.

На фото пример «освоения» денег на строительство солнечной электростанции. Обратите внимание, солнечные панели установлены ЗА деревом – таким образом, свет на них не попадает, и они просто не работают.

Типы солнечных электростанций

Сразу отмечу, что говорить я буду не о промышленных решениях и не о сверхмощных системах, а об обычной потребительской солнечной электростанции для небольшого дома. Я не олигарх, чтобы разбрасываться деньгами, но я придерживаюсь принципа достаточной разумности. То есть я не хочу греть бассейн «солнечным» электричеством или заряжать электромобиль, которого у меня нет, но я хочу, чтобы в моем доме все приборы постоянно работали, без оглядки на электросети.

Теперь расскажу про типы солнечных электростанций для частного дома. По большому счету, их всего три, но бывают вариации. Расположу, по росту стоимости каждой системы.

Сетевая Солнечная Электростанция — этот тип электростанции сочетает в себе невысокую стоимость и максимальную простоту эксплуатации. Состоит всего из двух элементов: солнечных панелей и сетевого инвертора. Электричество от солнечных панелей напрямую преобразуется в 220В/380В в доме и потребляется домашними энергосистемами. Но есть существенный недостаток: для работы ССЭ необходима опорная сеть. В случае отключения внешней электросети, солнечные батареи превратятся в «тыкву» и перестанут выдавать электричество, так как для функционирования сетевого инвертора нужна опорная сеть, то есть само наличие электричества. Кроме того, со сложившейся инфраструктурой электросети, работа сетевого инвертора не очень выгодна. Пример: у вас солнечная электростанция на 3 кВт, а дом потребляет 1 кВт. Излишки будут «перетекать» в сеть, а обычные счетчики считают энергию «по модулю», то есть отданную в сеть энергию счетчик посчитает, как потребленную, и за нее еще придется заплатить. Тут логично подходит вопрос: куда девать лишнюю энергию и как этого избежать? Переходим ко второму типу солнечных электростанций.

Гибридная Солнечная Электростанция – этот тип электростанции сочетает в себе достоинства сетевой и автономной электростанции. Состоит из 4 элементов: солнечные панели, солнечный контроллер, аккумуляторы и гибридный инвертор. Основа всего – это гибридный инвертор, который способен в потребляемую от внешней сети энергии подмешивать энергию, выработанную солнечными панелями. Более того, хорошие инверторы имеют возможность настройки приоритезации потребляемой энергии. В идеале, дом должен потреблять сначала энергию от солнечных панелей и только при ее недостатке, добирать из внешней сети. В случае исчезновения внешней сети инвертор переходит в автономную работу и пользуется энергией от солнечных панелей и энергией, запасенной в аккумуляторах. Таким образом, даже если электроэнергию отключат на продолжительное время и будет пасмурный день (или электричество отключат ночью), в доме всё будет функционировать. Но что делать, если электричества нет вообще, а жить как-то надо? Тут я перехожу к третьему типу электростанции.

Автономная Солнечная Электростанция – этот тип электростанции позволяет жить полностью независимо от внешних электросетей. Она может включать в себя больше 4 стандартных элементов: солнечные панели, солнечный контроллер, АКБ, инвертор.

Дополнительно к этому, а иногда вместо солнечных панелей, может быть установлена ГидроЭлектроСтанция малой мощности, ветряная электростанция, генератор (дизельный, газовый или бензиновый). Как правило, на таких объектах присутствует генератор, поскольку может не быть солнца и ветра, а запас энергии в аккумуляторах не бесконечен – в этом случае генератор запускается и обеспечивает энергией весь объект, попутно заряжая АКБ. Такая электростанция легко трансформируется в гибридную, при подключении внешней электросети, если инвертор обладает этими функциями. Основное отличие автономного инвертора от гибридного – это то, что он не умеет подмешивать энергию от солнечных панелей к энергии из внешней сети. При этом гибридный инвертор, наоборот, умеет работать в качестве автономного, если внешняя сеть будет отключена. Как правило, гибридные инверторы соразмерны по цене с полностью автономными, а если и отличаются, то несущественно.

Что такое солнечный контроллер?

Во всех типах солнечных электростанций присутствует солнечный контроллер. Даже в сетевой солнечной электростанции он есть, просто входит в состав сетевого инвертора. Да и многие гибридные инверторы выпускаются с солнечными контроллерами на борту. Что же это такое и для чего он нужен? Буду говорить о гибридной и автономной солнечной электростанции, поскольку это как раз мой случай, а с устройством сетевого инвертора могу ознакомить детальнее в комментариях, если будут запросы в комментариях.

Солнечный контроллер – это устройство, которое полученную от солнечных панелей энергию преобразует в перевариваемую инвертором энергию. Например, солнечные панели изготавливаются с напряжением кратно 12В. И АКБ изготавливаются кратно 12В, так уж повелось. Простые системы на 1-2 кВт мощности работают от 12В. Производительные системы на 2-3 кВт уже функционируют от 24В, а мощные системы на 4-5 кВт и более работают на 48В. Сейчас я буду рассматривать только «домашние» системы, потому что знаю, что есть инверторы, работающие на напряжениях в несколько сотен вольт, но для дома это уже опасно.

Итак, допустим у нас есть система на 48В и солнечные панели на 36В (панель собрана кратно 3х12В). Как получить искомые 48В для работы инвертора? Конечно, к инвертору подключаются АКБ на 48В, а к этим аккумуляторам подключается солнечный контроллер с одной стороны и солнечные панели с другой. Солнечные панели собираются на заведомо большее напряжение, чтобы суметь зарядить АКБ. Солнечный контроллер, получая заведомо большее напряжение с солнечных панелей, трансформирует это напряжение до нужной величины и передает в АКБ. Это упрощенно. Есть контроллеры, которые могут со 150-200 В от солнечных панелей понижать до 12 В аккумуляторов, но тут протекают очень большие токи и контроллер работает с худшим КПД. Идеальный случай, когда напряжение с солнечных панелей вдвое больше напряжения на АКБ.

Солнечных контроллеров существует два типа: PWM (ШИМ – Широтно-Импульсная Модуляция) и MPPT (Maximum Power Point Tracking – отслеживание точки максимальной мощности). Принципиальная разница между ними в том, что ШИМ-контроллер может работать только со сборками панелей, не превышающими напряжения АКБ. MPPT – контроллер может работать с заметным превышением напряжения относительно АКБ. Кроме того, MPPT-контроллеры обладают заметно бОльшим КПД, но и стоят дороже.

Как выбрать солнечные панели?

На первый взгляд, все солнечные панели одинаковы: ячейки солнечных элементов соединены между собой шинками, а на задней стороне есть два провода: плюс и минус. Но есть в этом деле масса нюансов. Солнечные панели бывают из разных элементов: аморфных, поликристаллических, монокристаллических. Я не буду агитировать за тот или иной тип элементов. Скажу просто, что сам предпочитаю монокристаллические солнечные панели. Но и это не всё. Каждая солнечная батарея – это четырехслойный пирог: стекло, прозрачная EVA-пленка, солнечный элемент, герметизирующая пленка. И вот тут каждый этап крайне важен. Стекло подходит не любое, а со специальной фактурой, которое снижает отражение света и преломляет падающий под углом свет таким образом, чтобы элементы были максимально освещены, ведь от количества света зависит количество выработанной энергии. От прозрачности EVA-пленки зависит, сколько энергии попадет на элемент и сколько энергии выработает панель. Если пленка окажется бракованной и со временем помутнеет, то и выработка заметно упадет.

Далее идут сами элементы, и они распределяются по типам, в зависимости от качества: Grade A, B, C, D и далее. Конечно, лучше иметь элементы качества А и хорошую пайку, ведь при плохом контакте, элемент будет греться и быстрее выйдет из строя. Ну и финишная пленка должна также быть качественной и обеспечивать хорошую герметизацию. В случае разгерметизации панелей, очень быстро на элементы попадет влага, начнется коррозия и панель также выйдет из строя.

Как правильно выбрать солнечную панель? Основной производитель для нашей страны – это Китай, хотя на рынке присутствуют и Российские производители. Есть масса OEM-заводов, которые наклеят любой заказанный шильдик и отправят панели заказчику. А есть заводы, которые обеспечивают полный цикл производства и способны проконтролировать качество продукции на всех этапах производства. Как узнать о таких заводах и брендах? Есть пара авторитетных лабораторий, которые проводят независимые испытания солнечных панелей и открыто публикуют результаты этих испытаний. Перед покупкой вы можете вбить название и модель солнечной панели и узнать, насколько солнечная панель соответствует заявленным характеристикам. Первая лаборатория – это Калифорнийская Энергетическая Комиссия, а вторая лаборатория Европейская – TUV. Если производителя панелей в этих списках нет, то стоит задуматься о качестве. Это не значит, что панель плохая. Просто бренд может быть OEM, а завод-производитель выпускает и другие панели. В любом случае, присутствие в списках этих лабораторий уже свидетельствует о том, что вы покупаете солнечные батареи не у производителя-однодневки.

Читать статью  Зарядка на солнечных батареях для телефона – обзор и принцип работы

Мой выбор солнечной электростанции

Перед покупкой стоит очертить круг задач, которые ставятся перед солнечной электростанцией, чтобы не заплатить за ненужное и не переплатить за неиспользуемое. Тут я перейду к практике, как и что делал я сам. Для начала, цель и исходные: в деревне периодически отключают электроэнергию на период от получаса до 8 часов. Возможны отключения как раз в месяц, так и подряд несколько дней. Задача: обеспечить дом электроснабжением в круглосуточном режиме с некоторым ограничением потребления на период отключения внешней сети. При этом, основные системы безопасности и жизнеобеспечения должны функционировать, то есть: должны работать насосная станция, система видеонаблюдения и сигнализации, роутер, сервер и вся сетевая инфраструктура, освещение и компьютеры, холодильник. Вторично: телевизоры, развлекательные системы, электроинструмент (газонокосилка, триммер, насос для полива огорода). Можно отключить: бойлер, электрочайник, утюг и прочие греющие и много потребляющие устройства, работа которых сиюминутно не важна. Чайник можно вскипятить на газовой плите, а погладить позже.

Как правило, солнечную электростанцию можно купить в одном месте. Продавцы солнечных панелей также продают всё сопутствующее оборудование, поэтому я начал поиск отталкиваясь от солнечных батарей. Один из солидных брендов – TopRay Solar. О них есть хорошие отзывы и реальный опыт эксплуатации в России, в частности, в Краснодарском крае, где знают толк в солнце. В РФ есть официальный дистрибьютор и дилеры по регионам, на вышеозначенных сайтах с лабораториями для проверки солнечных панелей этот бренд присутствует и далеко не на последних местах, то есть можно брать. Кроме того, фирма-продавец солнечных панелей TopRay, также занимается собственным производством контроллеров и электроники для дорожной инфраструктуры: системы управления трафиком, светодиодные светофоры, мигающие знаки, солнечные контроллеры и прочее. Ради любопытства даже напросился на их производство – вполне технологично и даже есть девушки, которые знают, с какой стороны подходить к паяльнику. Бывает же!

Со своим списком хотелок я обратился к ним и попросил собрать мне пару комплектаций: подороже и подешевле для моего дома. Мне задали ряд уточняющих вопросов насчет резервируемой мощности, наличия потребителей, максимальной и постоянной потребляемой мощности. Последнее вообще оказалось для меня неожиданным: дом в режиме энергосбережения, когда работают только системы видеонаблюдения, охраны, связь с инетом и сетевая инфраструктура, потребляет 300-350 Вт. То есть даже если дома никто не пользуется электричеством, на внутренние нужды уходит до 215 кВт*ч в месяц. Вот тут и задумаешься над проведением энергетического аудита. И начнешь выключать из розеток зарядки, телевизоры и приставки, которые в режиме ожидания потребляют по чуть-чуть, а набегает прилично.
Не буду томить, остановился я на более дешевой системе, так как зачастую до половины суммы за электростанцию может занимать стоимость аккумуляторов. Список оборудования получился следующим:

  1. Солнечная батарея TopRay Solar 280 Вт Моно – 9 шт
  2. Однофазный Гибридный инвертор на 5 кВт InfiniSolar V-5K-48 – 1 шт
  3. Аккумулятор AGM Парус HML-12-100 – 4 шт

Что даёт солнечная электростанция?

Этот комплект может выдать до 5 кВт мощности в автономном режиме – именно такой мощности я выбрал однофазный инвертор. Если докупить такой же инвертор и модуль сопряжения к нему, то можно нарастить мощность до 5кВт+5кВт=10 кВт на фазу. Или можно сделать трехфазную систему, но я пока довольствуюсь и этим. Инвертор высокочастотный, а потому достаточно легкий (порядка 15 кг) и занимает немного места – легко монтируется на стену. В него уже встроено 2 MPPT-контроллера мощностью 2,5 кВт каждый, то есть я могу добавить еще столько же панелей без покупки дополнительного оборудования.

Солнечных панелей у меня на 2520 Вт по шильдику, но из-за неоптимального угла установки они выдают меньше – максимум я видел 2400 Вт. Оптимальный угол – это перпендикулярно солнцу, что в наших широтах составляет примерно 45 градусов к горизонту. У меня панели установлены под 30 градусов.

Сборка АКБ составляет 100А*ч 48В, то есть запасено 4,8 кВт*ч, но забирать энергию полностью крайне нежелательно, поскольку тогда их ресурс заметно сокращается. Желательно разряжать такие АКБ не более, чем на 50%. Это литий-железофосфатные или литий-титанатные можно заряжать и разряжать глубоко и большими токами, а свинцово-кислотные, будь то жидкостные, гелевые или AGM лучше не насиловать. Итак, у меня есть половина емкости, а это 2,4 кВт*ч, то есть порядка 8 часов в полностью автономном режиме без солнца. Этого хватит на ночь работы всех систем и еще останется половина емкости АКБ на аварийный режим. Утром уже встанет солнце и начнет заряжать АКБ, параллельно обеспечивая дом энергией. То есть дом может функционировать и автономно в таком режиме, если снизить энергопотребление и погода будет хорошей. Для полной автономии можно было бы добавить еще аккумуляторов и генератор. Ведь зимой солнца совсем мало и без генератора будет не обойтись.

Начинаю собирать

Перед покупкой и сборкой необходимо просчитать всю систему, чтобы не ошибиться с расположением всех систем и прокладкой кабелей. От солнечных панелей до инвертора у меня порядка 25-30 метров и я заранее проложил два гибких провода сечением 6 кв.мм, так как по ним будет передаваться напряжение до 100В и ток 25-30А. Такой запас по сечению был выбран, чтобы минимизировать потери на проводе и максимально доставить энергию до приборов. Сами солнечные панели я монтировал на самодельные направляющие из алюминиевых уголков и притягивал их самодельными же креплениями. Чтобы панель не сползала вниз, на алюминиевом уголке напротив каждой панели смотрит вверх пара 30мм болтов, и они являются своеобразным «крючком» для панелей. После монтажа их не видно, но они продолжают нести нагрузку.

Солнечные панели были собраны в три блока по 3 панели в каждом. В блоках панели подключаются последовательно — так напряжение удалось поднять до 115В без нагрузки и снизить ток, а значит можно выбрать провода меньшего сечения. Блоки между собой подключены параллельно специальными коннекторами, обеспечивающими хороший контакт и герметичность соединения – называются MC4. Их же я использовал для подключения проводов к солнечному контроллеру, так как они обеспечивают надежный контакт и быстрое замыканиеразмыкание цепи для обслуживания.

Далее переходим к монтажу в доме. АКБ предварительно заряжены «умной» автомобильной зарядкой, чтобы выровнять напряжение и подключены последовательно для обеспечения напряжения 48В. Далее, они подключены к инвертору кабелем с сечением 25 мм кв. Кстати, во время первого подключения АКБ к инвертору будет заметная искра на контактах. Если вы не спутали полярность, то всё нормально – в инверторе установлены довольно емкие конденсаторы и они начинают заряжаться в момент подключения к аккумуляторам. Максимальная мощность инвертора – 5000 Вт, а значит ток, который может проходить по проводу от АКБ будет составлять 100-110А. Выбранного кабеля хватает для безопасной эксплуатации. После подключения АКБ, можно подключать внешнюю сеть и нагрузку дома. К клеммным колодкам цепляются провода: фаза, ноль, заземление. Тут всё просто и наглядно, но если для вас починить розетку небезопасно, то подключение этой системы лучше доверить опытным электромонтажникам. Ну и последним элементом подключаю солнечные панели: тут тоже надо быть внимательным и не перепутать полярность. При мощности в 2,5 кВт и неправильном подключении, солнечный контроллер сгорит моментально. Да что там говорить: при такой мощности, от солнечных панелей можно заниматься сваркой напрямую, без сварочного инвертора. Здоровья это солнечным панелям не добавит, но мощь солнца действительно велика. Так как я дополнительно использую разъемы MC4, перепутать полярность просто невозможно при первоначальном правильном монтаже.

Всё подключено, один щелчок выключателя и инвертор переходит в режим настройки: тут надо выставить тип АКБ, режим работы, зарядные токи и прочее. Для этого есть вполне понятная инструкция и если вы можете справиться с настройкой роутера, то настройка инвертора тоже не будет очень сложной. Надо только знать параметры АКБ и правильно их настроить, чтобы они прослужили как можно дольше. После этого, хм… После этого наступает самое интересное.

Эксплуатация гибридной солнечной электростанции

После запуска солнечной электростанции, я и моя семья пересмотрели многие привычки. Например, если раньше стирка или посудомоечная машина запускались после 23 часов, когда работал ночной тариф в электросетях, то теперь эти энергозатратные работы перенесены на день, потому что стиралка потребляет 500-2100 Вт во время работы, посудомоечная машина потребляет 400-2100 Вт. Почему такой разброс? Потому что насосы и моторы потребляют немного, а вот нагреватели воды крайне прожорливы. Гладить оказалось тоже «выгоднее» и приятнее днем: в комнате гораздо светлее, а энергия солнца полностью покрывает потребление утюга. На скриншоте продемонстрирован график выработки энергии солнечной электростанцией. Хорошо виден утренний пик, когда работала стиральная машинка и потребляла много энергии – эта энергия была выработана солнечными панелями.

Первые дни я по несколько раз подходил к инвертору, взглянуть на экран выработки и потребления. После поставил утилиту на домашний сервер, который в реальном времени отображает режим работы инвертора и все параметры электросети. К примеру, на скриншоте видно, что дом потребляет больше 2 кВт энергии (пункт AC output active power) и вся эта энергия заимствуется от солнечных батарей (пункт PV1 input power). То есть инвертор, работая в гибридном режиме с приоритетом питания от солнца, полностью покрывает энергопотребление приборов за счет солнца. Это ли не счастье? Каждый день в таблице появлялся новый столбик выработки энергии и это не могло не радовать. А когда во всей деревне отключили электричество, я узнал об этом только по писку инвертора, который оповещал о работе в автономном режиме. Для всего дома это означало только одно: живем как прежде, пока соседи ходят за водой с ведрами.

Но есть в наличии дома солнечной электростанции и нюансы:

  1. Я начал замечать, что птицы любят солнечные панели и, пролетая над ними, не могут сдержаться от счастья наличия технологичного оборудования в деревне. То есть иногда всё же солнечные панели надо мыть от следов и пыли. Думаю, что при установке под 45 градусов, все следы просто смывались бы дождями. Выработка от нескольких птичьих следов вообще не падает, но если затенена часть панели, то падение выработки становится ощутимым. Это я заметил, когда солнце пошло к закату и тень от крыши начала накрывать панели одну за другой. То есть лучше располагать панели вдали от всех конструкций, способных их затенить. Но даже вечером, при рассеянном свете, панели выдавали несколько сотен ватт.
  2. При большой мощности солнечных панелей и подкачке от 700 Ватт и более, инвертор включает вентиляторы активнее и их становится слышно, если дверь в техническое помещение открыта. Тут либо закрывать дверь, либо крепить инвертор на стену через демпфирующие прокладки. В принципе, ничего неожиданного: любая электроника греется при работе. Просто надо учитывать, что инвертор не стоит вешать там, где он может мешать звуком своей работы.
  3. Фирменное приложение умеет отправлять оповещения по электронной почте или в SMS, если произошло какое-либо событие: включение/отключение внешней сети, разряд АКБ и подобное. Вот только приложение работает по незащищенному 25 порту SMTP, а все современные почтовые сервисы, вроде gmail.com или mail.ru работают по защищенному порту 465. То есть сейчас, фактически, оповещения по почте не приходят, а хотелось бы.
Читать статью  Повер банк с солнечной батареей

Заключение

Полагаю, что это не последний мой рассказ о собственной солнечной электростанции. Опыт эксплуатации в различных режимах и в разное время года однозначно будет отличаться, но я точно знаю, что даже если в Новый Год отключат электричество, в моём доме будет светло. По результатам эксплуатации установленной солнечной электростанции могу отметить, что оно того стоило. Несколько отключений внешней сети прошли незаметно. О нескольких я узнал только по звонкам соседей с вопросом «У тебя тоже нет света?». Бегущие цифры выработки электричества безмерно радуют, а возможность убрать от компа UPS зная, что даже при отключении электроэнергии всё продолжит работать – это приятно. Ну а когда у нас наконец-то примут закон о возможности продажи электроэнергии частными лицами в сеть, я первый подам заявку на эту функцию, ведь в инверторе достаточно изменить один пункт и всю выработанную, но не потребленную домом энергию, я буду продавать в сеть и получать за это деньги. В общем, это оказалось довольно просто, эффективно и удобно. Готов ответить на ваши вопросы и выдержать натиск критиков, убеждающих всех, что в наших широтах солнечная электростанция – это игрушка.

  • солнечная энергетика
  • солнечная батарея
  • автономное питание
  • дом
  • дача
  • коттедж
  • энергонезависимый дом
  • topray solar
  • гибридный инвертор
  • UPS
  • solarworks
  • Энергия и элементы питания
  • Умный дом
  • DIY или Сделай сам
  • Инженерные системы

Автономная энергосистема на солнечных батареях — как рассчитать?

raschet solnechnye batarei

Приводим простой пошаговый метод расчета автономной энергосистемы на солнечных батареях. Этот метод поможет Вам определить требования к системе и выбрать необходимые Вам комплектующие и материалы системы автономного электроснабжения.

Расчет энергосистемы состоит из нескольких этапов:

  1. Определение общей нагрузки и потребляемой мощности.
  2. Определение необходимой мощности инвертора и емкости аккумуляторной батареи.
  3. Определение необходимого количества фотоэлектрических модулей (собственно самих солнечных батарей), исходя из данных по среднестатическому количеству солнечной радиации в месте установки системы.
  4. Примерный расчет стоимости системы (и варианты при различных изготовителях)

После выполнения 4 шага, если стоимость автономной системы окажется слишком велика, можно рассмотреть различные варианты уменьшения стоимости Вашей системы электроснабжения на солнечных батареях:

  • уменьшение потребляемой мощности за счет замены существующих потребителей на энергоэффективные, с низким потребление электричества, а также исключение тепловой, «фантомной» и необязательной нагрузки (например, можно использовать холодильники, кондиционеры и т.п., работающие на газе).
  • замену нагрузки переменного тока на нагрузку постоянного тока. В этом случае можно выиграть на отсутствии потерь в инверторе (от 10 до 40%). Однако, нужно учитывать особенности построения низковольтных систем постоянного тока.
  • введение в систему электроснабжения дополнительного генератора электроэнергии — ветроустановки или дизель- или бензогенератора.
  • смириться с тем, что электроэнергия будет у Вас не всегда. И чем больше будет мощность системы отличаться от потребляемой мощности, тем более вероятны будут у Вас периоды отсутствия электроэнергии. В такие периоды, а это может быть совсем не продолжительно (1-3 недели зимой, в самые короткие дни), Вы можете сами просто немного ограничить Ваше обычное энергопотребление и все. При этом экономия на оборудовании может быть ОЧЕНЬ существенной (вплоть до 50%!)

Расчет автономной Системы электроснабжения на солнечной энергии

Shema solnechnye batarei

Составьте список устройств-потребителей электроэнергии, которые Вы собираетесь питать от автономной энергосистемы. Определите потребляемую мощность во время их работы. Большинство устройств имеют маркировку, на которой указана номинальная потребляемая мощность в ваттах или киловаттах. Если указан потребляемый ток, то нужно умножить этот ток на номинальное напряжение (обычно 220 В). Перемножается мощность на время работы для определения требуемой энергии в Вт ч в неделю. Далее все эти данные суммируются для вычисления полной нагрузки переменного тока в ватт-часах в неделю .

Подсчитайте нагрузку переменного тока.Если у Вас нет такой нагрузки, то можете пропустить этот шаг и перейти к подсчету нагрузки постоянного тока.

1.1. Перечислите всю нагрузку переменного тока, ее номинальную мощность и число часов работы в неделю. Умножьте мощность на число часов работы для каждого прибора. Сложите получившиеся значения для определения суммарной потребляемой энергии переменного тока в неделю.

solnechnye batarei raschet

1.2. Далее нужно подсчитать сколько энергии постоянного тока потребуется. Для этого нужно умножить получившееся значение на коэффициент 1,2, учитывающий потери в инверторе.

1.3. Определите значение входного напряжения инвертора по характеристикам выбранного инвертора. Обычно это 12 или 24 В.

1.4. Разделите значение п.1.2 на значение п.1.3. Вы получите число Ампер-часов в неделю, требуемое для покрытия вашей нагрузки переменного тока.

Подсчитайте нагрузку постоянного тока

1.5. Запишите данные нагрузки постоянного тока :

Описание нагрузки постоянного тока Ватт X часов/неделю = Вт*ч/неделю
X =
X =
Всего

1.6. Определите напряжение в системе постоянного тока. Обычно это 12 или 24 В. (Как в п.1.3)

1.7. Определите требуемое количество А*ч в неделю для нагрузки постоянного тока (разделите значение п.1.5 на значение п.1.6).

1.8. Сложите значение п.1.4 и п. 1.7 для определения суммарной требуемой емкости аккумуляторной батареи. Это будет количество А*ч, потребляемых в неделю.

1.9. Разделите значение п.1.8 на 7 дней; Вы получите суточное значение потребляемых А*ч.

2. Оптимизируйте Вашу нагрузку

На этом этапе важно проанализировать Вашу нагрузку и попытаться уменьшить потребляемую мощность как можно больше. Это важно для любой системы, но особенно важно для системы электроснабжения жилого дома, так как экономия может быть очень существенной. Сначала определите большую и изменяемую нагрузку (например, насосы для воды, наружное освещение, холодильники переменного тока, стиральная машина, электронагревательные приборы и т.п) и попытайтесь исключить их из вашей системы или заменить на другие аналогичные модели, такие как приборы, работающие на газе или от постоянного тока.

Начальная стоимость приборов постоянного тока обычно выше (потому что они выпускаются не в таком массовом количестве), чем таких же приборов переменного тока, но вы избежите потерь в инверторе. Более того, зачастую приборы постоянного тока более эффективны, чем приборы переменного тока (во многих бытовых приборах, особенно электронных, переменный ток преобразуется в постоянный, что ведет к потерям энергии в блоках питания приборов).

Замените лампы накаливания на люминесцентные лампы везде, где это возможно. Люминесцентные лампы обеспечивают такой же уровень освещенности при том, что потребляют в 4-5 раз меньше электроэнергии. Срок их службы также примерно в 8 раз больше.

Если у Вас есть нагрузка, которую Вы не можете исключить, рассмотрите вариант, при котором Вы будете включать ее только в солнечные периоды, или только летом. Пересмотрите список Вашей нагрузки и пересчитайте данные.

Выберите тип аккумуляторной батареи, которую Вы будете использовать. Рекомендуются использовать герметичные необслуживаемые свинцово-кислотные аккумуляторы, которые обладают самыми лучшими эксплуатационно-экономическими параметрами.

Далее Вам нужно определить, сколько энергии Вам нужно получать от аккумуляторной батареи. Часто это определяется количеством дней, в течение которых АБ будет питать нагрузку самостоятельно без подзаряда. Дополнительно к этому параметру Вам нужно учитывать характер работы системы электроснабжения. Например, если Вы устанавливаете систему для Вашего загородного дома, который Вы посещаете только на выходные, Вам лучше установить АБ большей емкости, потому что она может заряжаться в течение всей недели, а отдавать энергию только в выходные дни. С другой стороны, если Вы добавляете фотоэлектрические модули к уже существующей системе электроснабжения на базе дизель- или бензогенератора, Ваша батарея может иметь меньшую емкость, чем расчетная, потому что этот генератор может быть включен для подзаряда АБ в любое время.

После того, как Вы определите требуемую емкость АБ, можно переходить к рассмотрению следующих очень важных параметров.

3.1. Определите максимальное число последовательных «дней без солнца» (т.е. когда солнечной энергии недостаточно для заряда АБ и работы нагрузки из-за непогоды или облачности). Вы также можете принять за этот параметр выбранное Вами количество дней, в течение которых АБ будет питать нагрузку самостоятельно без подзаряда.

3.2. Умножьте суточное потребление в А*ч (см. п.1.9 расчета потребляемой энергии выше) на количество дней, определенных в предыдущем пункте.

3.3. Задайте величину глубины допустимого разряда АБ. Учитывайте, что чем больше глубина разряда, тем быстрее Ваши АБ выйдут из строя. Мы рекомендуем значение глубины разряда 20% (не более 30%), что значит что Вы можете использовать 20% от значения номинальной емкости вашей АБ. Используйте коэффициент 0,2 (или 0,3). Ни при каких обстоятельствах разряд батареи не должен превышать 80%!

3.4. Разделите п.3.2 на п.3.3

3.5.Выберите коэффициент из таблицы, приведенной ниже, который учитывает температуру окружающей среды в помещении, где установлены АБ. Обычно это средняя температура в зимнее время. Этот коэффициент учитывает уменьшение емкости АБ при понижении температуры.

Температурный коэффициент для аккумуляторной батареи

Температура в градусах коэффициент
Фаренгейта Цельсия
80F 26.7C 1.00
70F 21.2C 1.04
60F 15.6C 1.11
50F 10.0C 1.19
40F 4.4C 1.30
30F -1.1C 1.40
20F -6.7C 1.59

3.6. Умножьте значение п.3.4 на коэффициент п.3.5. Вы получите общую требуемую емкость АБ.

3.7. Разделите это значение на номинальную емкость выбранной Вами аккумуляторной батареи. Округлите полученное значение до ближайшего большего целого. Это будет количество батарей, которые будут соединены параллельно.

3.8. Разделите номинальное напряжение постоянного тока системы (12, 24 или 48В) на номинальное напряжение выбранной аккумуляторной батареи (обычно 2, 6 или 12В).Округлите полученное значение до ближайшего большего целого. Вы получите значение последовательно соединенных батарей.

3.9. Умножьте значение п.3.7 на значение п.3.8. для того, чтобы подсчитать требуемое количество аккумуляторных батарей.

4. Определите количество пиковых солнце-часов в день для вашего места

Несколько факторов влияют на то, как много солнечной энергии будет принимать Ваша солнечная батарея:

  • Когда будет использоваться система? Летом? Зимой? Круглый год?
  • Типичные погодные условия вашей местности
  • Будет ли система ориентироваться на солнце
  • Расположение и угол наклона фотоэлектрических модулей

Для определения среднемесячного прихода солнечной радиации Вы можете воспользоваться таблицей прихода солнечной радиации для некоторых городов России.

Месячные и годовые суммы суммарной солнечной радиации, кВт*ч/м 2

solnechnye batarei

*для справки: при ярком солнце мощность солнечного излучения — 1000 Вт/м2, при темной облачности может быть и 50 Вт/м2

Выработка электроэнергии солнечной фотоэлектрической батареей (СБ) зависит от угла падения солнечных лучей на СБ. Максимум бывает при угле 90 градусов. При отклонении от этого угла все большее количество лучей отражается, а не поглощается СБ.

Зимой приход радиации значительно меньше из-за того, что дни короче, облачных дней больше, Солнце стоит ниже на небосклоне. Если Вы используете Вашу систему только летом, используйте летние значения, если круглый год, используете значения для зимы. Для надежного электроснабжения выбирайте из среднемесячных значений наименьшее для периода, в течение которого будет использоваться ФЭС.

Читать статью  Как сделать самые простые лопасти ветрогенератора

Выбранное среднемесячное значение для худшего месяца нужно разделить на число дней в месяце. Вы получите среднемесячное количество число пиковых солнце-часов, которое будет использоваться для расчета Вашей СБ.

Далее необходимо определить общее количество модулей, необходимых для вашей системы.

Ток в точке максимальной мощности Impp может быть определен из спецификаций модулей. Вы также можете определить Imppподелив номинальную мощность модуля на напряжение в точке максимальной мощности Umpp (обычно 17 — 17.5 В для 12 — вольтового модуля).

5.1. Умножьте значение п. 1.9 на коэффициент 1.2 для учета потерь на заряд-разряд АБ

5.2. Разделите полученное значение на среднее число пиковых солнце-часов в вашей местности. Вы получите ток, который должна генерировать СБ

5.3. Для определения числа модулей, соединенных параллельно разделите значение п. 5.2 на Impp одного модуля. Округлите полученное число до ближайшего большего целого.

5.4. Для определения числа модулей, соединенных последовательно, разделите напряжение постоянного тока системы (обычно 12, 24, 48 В) на номинальное напряжение модуля (обычно 12 или 24 В).

5.5. Общее количество требуемых фотоэлектрических модулей равно произведению значений п. 5.3 и п. 5.4.

Для расчета стоимости фотоэлектрической системы электроснабжения нужно сложить стоимости СБ, АБ, инвертора, контроллера заряда АБ и соединительной арматуры (провода, выключатели, предохранители и т.п.)

Стоимость солнечной батареи равна произведению значения п.5.5 на стоимость одного модуля. Стоимость аккумуляторной батареи равна произведению значения п.3.9 на стоимость одной аккумуляторной батареи. Стоимость инвертора зависит от его мощности и типа. Стоимость соединительной арматуры можно принять примерно равной 0,1-1% от стоимости системы.

Пример расчета автономной системы электроснабжения на фотоэлементах.

solnechnye batarei 1

solnechnye batarei 2

solnechnye batarei 3

(*Цены приведены для примера и могут сильно отличаться у разных производителей)

Основываясь на данных расчета Вам необходимо выбрать основные компоненты автономной энергосистемы на солнечных батареях.

  • Контроллер заряда
  • Инвертор
  • Соединительные провода
  • Предохранители, переключатели и разъемы
  • Измерители и индикаторы
  • Инструмент для монтажа
  • Резервный генератор (не обязательно)

Выбор оборудования

raschet solnechnye batarei 1

Панели фотоэлементов

При подборе панелей помимо их мощности следует учитывать три фактора — их геометрию, номинальное выходное напряжение и тип фотоэлементов.

Выбор размеров панели

Геометрия определяется конкретными условиями установки, и здесь трудно дать общие рекомендации кроме одной — если у вас есть возможность выбора между большой панелью и несколькими маленькими, лучше взять большую — более эффективно используется общая площадь и будет меньше внешних соединений, а значит,будет выше надёжность. Размеры готовых панелей не слишком велики и не превысят полтора-два квадратных метра при номинальной мощности до 200-250 Вт. Панели небольших размеров (возможно, на меньшее номинальное напряжение) их следует использовать только там, где невозможно установить более крупные панели.

Для достижения нужных значений номинального напряжения и номинальной мощности панели можно объединять в последовательные сборки, которые затем коммутируются параллельно — аналогично тому, как коммутируется банк аккумуляторов. Как и в случае аккумуляторов, в одной сборке следует использовать только однотипные панели.

Обычно панели заводского изготовления имеют прямоугольную форму с соотношением сторон 1:2 или близким к нему. Поэтому если надо монтировать их вплотную в несколько рядов, то их можно размещать «стоя» (длинной стороной вертикально) или «лёжа на боку» (длинной стороной горизонтально). Возникает вопрос — какую ориентацию предпочесть? Ответ — ту, при которой во время движения Солнца минимум панелей будут испытывать полутень, так как даже один затенённый элемент резко снижает выработку всей панели. Например, если в предполагаемом месте установки возможно наиболее вероятно вертикальное смещение границы затенения (от конька соседской крыши, от высокого глухого длинного забора, от полосы кустарника, от верхушек близкого леса и пр.), то панели лучше располагать «лёжа на боку». Если тень в основном будет перемещаться по горизонтали от одной боковой стороны к другой (скажем, тени от угла высокого дома, от толстого столба, от высокого дерева), то панели будем располагать «стоя». Дополнительно можно заметить, что при вертикальном расположении панелей меньше число горизонтальных стыков, что способствует лучшему смыванию грязи и сходу снега с панелей, поэтому панели, которые ничто не будет затенять, лучше монтировать «стоя». Но если возможно затенение панелей, то приоритетно преимущественное направление затенения и выхода из тени.

Выбор напряжения солнечной батареи

С напряжением тоже всё просто — лучше выбирать 24-вольтовые панели, поскольку рабочие токи у них вдвое меньше, чем у 12-вольтовых той же мощности. Панели одинаковой мощности одного и того же производителя, рассчитанные на разное напряжение, обычно различаются лишь внутренней коммутацией фотоэлементов. Панели с номинальным напряжением выше 24 В встречаются редко и обычно собираются из более низковольтных. 12-вольтовые панели, на мой взгляд, оправданы лишь в двух случаях — для маломощных систем, где 12 вольт являются рабочим напряжением инвертора, а также если по архитектурным или конструктивным соображениям необходимо использовать панели малого размера, для которых не существует вариантов на 24 В.

При индивидуальной сборке панелей из отдельных фотоэлементов не нужно забывать о защитных диодах в каждой цепочке для предотвращения протекания обратного тока при неравномерной засветке. В противном случае мощность, выработанная освещёнными секциями панели, вместо полезной нагрузки будет выделяться на затенённом фотоэлементе, а это чревато его перегревом и полным выходом из строя (неосвещённый фотоэлемент в этой ситуации окажется открытым диодом). Допускаемый прямой ток защитных диодов должен быть больше, чем ток короткого(коротыша) замыкания защищаемой цепочки фотоэлементов при максимальной освещённости.

Типы фотоэлементов

Наконец, надо выбрать тип фотоэлементов. В настоящее время наиболее часто предлагаются (распространенные) фотоэлементы на монокристаллическом или поликристаллическом кремнии. Монокристаллический кремний обычно имеет КПД в районе 16-18%, а поликристаллический — 12-14%, зато он несколько дешевле. Однако в готовых панелях цена за ватт (т.е. в пересчёте на вырабатываемую мощность) получается почти одинаковой, и монокристаллический кремний может оказаться даже выгодней. По такому параметру, как степень и скорость деградации, разницы между ними практически да и фактически нет. В связи с этим выбор в сторону монокристаллического кремния очевиден — при равной мощности панели из него компактнее. Кроме того, при снижении освещённости монокристаллический кремний обеспечивает номинальное напряжение выше и дольше, чем поликристаллический, а это позволяет получать хоть какую-то энергию даже в очень пасмурную погоду и в лёгких сумерках. Зато у поликристаллического кремния обычно ниже напряжение холостого хода (у монокристаллического оно может превышать номинал вдвое), ниже и напряжение максимальной мощности. Но если подключать панель к инвертору и аккумулятору не напрямую, а через современный контроллер, то это не имеет существенного значения.

Выбор размещения и суммарной мощности панелей

Очевидно, что обычно нет смысла выбирать суммарную мощность панелей фотопреобразователей больше мощности инвертора. Тем не менее, такое превышение может быть оправдано при наличии мощной постоянной нагрузки и мощного блока аккумуляторов или в расчёте на длительные периоды пасмурной погоды.

Ещё одним интересным вариантом, когда суммарная мощность панелей может существенно превосходить как мощность инвертора, так и мощность, нужную для зарядки аккумуляторов, является их размещение на противоположных стенах коттеджа или на очень крутых скатах крыши (наклон ската не менее 45°), если они ориентированы на запад и восток — тогда мощность каждого поля солнечных батарей (восточного и западного) может достигать 80% от полной требуемой мощности системы, а мощность фотопанелей, подключённых к одному контроллеру, может превышать его номинальную мощность почти в полтора раза! Дело в том, что прямые лучи(солнца) не могут одновременно освещать две противоположные стены или два противоположных крутых ската крыши, а мощность, выдоваемых батареей при отсутствии прямой засветки, падает раз в 10 (во избежание перегрузки контроллера берём её с двух-кратным запасом, отсюда и получается цифра 80%, а не 90%). Да, такая «сплит-система» будет дороже, чем «моноблочная» система с той же рабочей мощностью, но с единым(общем) полем фото-панелей, ориентированным на юг, — ведь панелей надо больше! В чём же преимущество «сплит-системы» над «моноблочной»?

В период длинных дней, когда Солнце всходит на востоке или даже северо-востоке, а заходит на западе или северо-западе, одно из полей «сплит-системы» всегда будет освещено Солнцем и потому будет выдавать хорошую мощность. Лишь в полдень лучи солнце будут скользить по обоим полям панелей, но в это время солнечный свет максимален, и воспринимаемое обоими панелями излучение весьма существенно. В то же время ориентированный на юг «моноблок» даёт мощный максимум выработки в середине дня, но утром или вечером его выработка обусловлена лишь рассеянымсветом а значит минимальна. Между тем именно в это время хорошо бы зарядить аккумуляторы после ночи или на ночь! В пасмурную погоду облака рассеивают свет, и его одинаково успешно воспринимают оба поля фотопанелей, так что общая выработка «сплит-системы» превосходит «моноблок» прямо пропорционально суммарной мощности всех панелей (но сама выработка достаточно мала, что исключает опасность перегрузки контроллера заряда). Лишь в короткие солнечные зимние дни ориентированный на юг «моноблок» по дневной выработке будет превосходить эту «сплит-систему». Но на большей части территории России зима пасмурная, а в пасмурные дни важна суммарная мощность всех фотопанелей, так что и здесь «моноблок» проигрывает сплит-системе. Особенно очень эффективно такое размещение фото-панелей в южных районах, где меньше разность между летними и зимними днями и даже зимой солнце поднимается очень высоко и достаточно далеко заходит на восток и запад.

Если же дом ориентирован по сторонам света не стенами, а углами, то можно разместить поля фотопанелей не на противоположные стороны (восток и запад), а на смежные юго-восток и юго-запад, — тогда и зимой даже в нашей Средней полосе эта система будет вне конкуренции, хотя во избежание перегрузки контроллеров «избыток» мощности, возможно, придётся снизить до 70%, а то и до 50% (точная цифра определяется конкретными условиями размещения панелей). Наконец, можно попытаться ориентировать фотопанели на все три «солнечные» стороны света — восток, юг и запад, — но такое лучше предусматривать на стадии проектирования дома и «посадки» его на местность.

При подсоединение панелей к контроллеру нужно следить, чтобы их суммарный максимальный ток не превышал 80% .. 90% от номинального тока контроллера. Пример, для 10-амперного ШИМ-контроллера суммарный ток должен составлять не более 8 .. 9 А. Запас необходим для того, чтобы контроллер мог выдержать выработку, например, в ясный зимний день, когда белый снег, хорошо отражающий свет, способствует перезасветке фотоэлементов по сравнению с расчётной, а умеренный мороз немного повышает их КПД. Таким образом, к одному 10-амперному контроллеру с ШИМ можно подключить панели на 24 В суммарной мощностью 300 Вт, а на 12 В — всего 150 Вт. Для контроллеров с MPPT, превращающих «излишек» напряжения в дополнительный ток, необходимый запас по номинальному току может быть ещё больше и суммарный ток батарей может быть ограничен вплоть до 60% .. 75% от тока, отдаваемого контроллером в нагрузку, то есть мощность панелей, подключаемых к 10-амперному контроллеру с MPPT, не должна превышать 220 .. 240 Вт при 24 В и вдвое меньше при 12 В. Обычно заводы производители контроллеров указывают допустимую суммарную мощность или номинальный суммарный ток подключаемых к ним панелей фотоэлементов.

Разделы

  • Главная — обзор
  • Авто-мото
  • Стройка и ремонт
  • Энергетика и электроника
  • Сад, огород, хозяйство
  • Рыбалка и охота
  • Сайтостроение
  • АнтиЛох
  • Карта сайта

Источник https://habr.com/ru/articles/460457/

Источник https://bazila.net/energetika-i-radioelektronika/raschet-avtonomnoj-sistemy-elektrosnabzheniya-na-solnechnykh-batareyakh.html

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *