Роль тяжелых металлов в экосфере

Содержание

Влияние тяжелых металлов на организм человека исследовательская работа

Аннотация научной статьи по ветеринарным наукам, автор научной работы — Гулиева Севда Вагиф Кызы, Керимова Рена Джаббар Кызы, Юсифова Матанат Юсиф Кызы

В статье приводится обзор данных литературы по содержанию тяжелых металлов в окружающей среде, описывается негативное воздействие некоторых из них на организм человека в целом.

Похожие темы научных работ по ветеринарным наукам , автор научной работы — Гулиева Севда Вагиф Кызы, Керимова Рена Джаббар Кызы, Юсифова Матанат Юсиф Кызы

Химические элементы плодов голубики (Vaccinium uliginosum L. ) семейства вересковые (Ericaceae Juss. )

Анализ содержания химических элементов в волосах девочек 16-17 лет, проживающих и обучающихся в районе г. Казани с развитой транспортной сетью

Текст научной работы на тему «Влияние тяжелых металлов на биохимические процессы в организме человека»

ВЛИЯНИЕ ТЯЖЕЛЫХ МЕТАЛЛОВ НА БИОХИМИЧЕСКИЕ ПРОЦЕССЫ В ОРГАНИЗМЕ ЧЕЛОВЕКА

Гулиева С.В. , Керимова Р.Дж. , Юсифова М.Ю.

1Гулиева Севда Вагиф кызы — кандидат биологических наук, доцент, отдел биохимии;

2Керимова Рена Джаббар кызы — кандидат медицинских наук, младший научный сотрудник,

отдел экспериментальной хирургии;

3Юсифова Матанат Юсиф кызы — старший лаборант, отдел фармакологии, Научно-исследовательский центр Азербайджанский медицинский университет, г. Баку, Азербайджанская Республика

Аннотация: в статье приводится обзор данных литературы по содержанию тяжелых металлов в окружающей среде, описывается негативное воздействие некоторых из них на организм человека в целом.

Ключевые слова: тяжелые металлы, микроэлементы, загрязнение окружающей среды.

Среди многих экологических проблем особое место занимает поступление загрязняющих веществ в окружающую среду, в частности тяжелых металлов, источниками которых являются отрасли промышленности, теплоэнергетики и автотранспорт. На сегодняшний день, опубликованы многочислен-ные исследования по содержанию тяжелых металлов и их соединений в почве [5, а 7]. Одними из наиболее вредных для биосферы Земли загрязнений, имеющих самые разнообразные вредные последствия для здоровья людей и жизнедеятельности живых организмов, являются загрязнения тяжелыми металлами (ТМ). Рост промышленной индустрии приводит к увеличению содержания тяжелых металлов в атмосфере. С экологических и токсиколого-гигиенических позиций не все тяжелые металлы могут быть восприняты однозначно. Прежде всего, представляют интерес металлы, которые наиболее широко и в значительных объемах используют в производственной деятельности человека, накапливающиеся во внешней среде и представляющие серьезную опасность с точки зрения их биологической активности и токсических свойств. В работах, посвященных проблемам загрязнения окружающей среды, на сегодняшний день к ТМ относят более 40 металлов периодической системы Д.И. Менделеева: V, Сг, Mn, Fe, Со, №, Си, Zn, Mo, Cd, Sn, Pb,Bi и др. [2, а 10]. Особенно опасными оказываются металлы, не входящие в состав биомолекул, т. е. ксенобиотики: РЬ, Cd. Все они образуют особо прочные соединения с концевыми тиогруппами белков, поэтому их называют тиоловыми ядами. Эти данные позволяют говорить о возможности участия тяжелых металлов и их соединений в качестве этиологических факторов развития различных заболеваний, играть определенную роль в росте генетических мутаций, раковых и сердечно-сосудистых патологий, отравлений, дерматозов, снижении иммунитета [3, с. 8].

Актуальность выбранной темы заключается в том, что тяжелые металлы и их соединения образуют значительную группу токсикантов, во многом определяющую антропогенное воздействие на экологическую структуру окружающей среды и самого человека. Учитывая все возрастающие масштабы производства и применения тяжелых металлов, высокую токсичность, способность накапливаться в организме человека, оказывать вредное влияние даже в сравнительно низких концентрациях, или дозах, эти химические загрязнители должны быть отнесены к числу приоритетных [5, с. 2].

Увеличение концентрации металлов-токсикантов в природе происходят и в результате вулканических извержений, проливных кислотных дождей. Все эти источники загрязнения вызывают в биосфере увеличения содержания этих металлов по сравнению с естественным фоновым уровнем.

Уже почти 85 лет известно, что каждый элемент имеет присущий ему диапазон безопасной экспозиции, который поддерживает оптимальные тканевые концентрации и функции; у каждого элемента имеется свой токсический диапазон, когда безопасная степень его экспозиции превышена [8, с. 160]. Известно большое количество публикаций и исследований, посвященных изучению содержания и накоплению ТМ в продуктах питания растительного и животного происхождения, а также разработанных рекомендаций, направленных на предупреждение неблагоприятного воздействия токсикантов на организм человека [7, с. 75]. Загрязнение объектов биосферы (почва, вода, воздух) является причиной накопления их в пищевом сырье как растительного происхождения, так и животного происхождения в количествах, превышающих вышеуказанные.

Из всех токсических элементов в данной работе будут рассмотрены мышьяк, свинец, кадмий, ртуть, цинк, медь, таллий.

Поступление в атмосферу кадмия связано с деятельностью промышленных предприятий и сжиганием разнообразных отходов [1, с. 201]. Основными путями поступления в организм человека является пероральный, ингаляционный и через кожу. Отравление кадмием разрушает печень и почки, приводя к сильнейшему нарушению функции почек. Избыток кадмия нарушает метаболизм металлов, особенно железа и кальция, нарушает действие цинковых и иных металло-ферментов, блокирует сульфгидрильные группы ферментов, нарушает синтез ДНК. Кадмий легко замещается в металлфлавопротеиновых комплексах, где главенствующую роль играют железо и молибден, нарушая двухстадийный процесс окисления.

Ртуть попадает в окружающую среду как в результате промышленного загрязнения, так и в результате естественного испарения из земной коры. Большое количество его попадает в окружающую среду и при разбивании медицинских термометров. Она токсична в любой своей форме. Ртуть в природных условиях довольно быстро превращается в летучее токсическое соединение — хлорид метилртути. Ионы метилртути попадая в эритроциты, печень и почки, оседают в мозге, вызывая серьезные необратимые нарушения ЦНС. Это приводит, в конце концов, к общему и церебральному параличу, деформации конечностей, особенно пальцев, и смерти. Ртуть блокирует активность ряда важнейших ферментов, в частности карбоангидразы, карбоксипептидазы, щелочной фосфатазы. Легко попадая в клетки, выводит из колеи метаболические реакции, связанные с витамином В12. Недостаточность витамина В12 приводит к повреждению механизма биосинтеза ДНК, являющейся причиной разных форм анемий, что приводит к дегенеративным изменениям нервной системы [6, с. 3].

В современных условиях наибольшим источником загрязнения свинцом среды обитания считаются выхлопы бензиновых двигателей автомашин, поскольку в бензин добавляется тетраэтилсвинец для повышения октанового числа. Свинец препятствует одной из ступеней биосинтеза гема, считается сильнейшим нейротоксином, вызывает повышенную агрессивность. Хроническое отравление свинцом постепенно приводит к нарушениям функций почек, нервной системы, анемии. Токсичность свинца увеличивается при недостатке в организме кальция и железа. Свинец блокирует SH-группы белков, образуя комплексы с фосфатными группами рибозы у нуклеотидов, и тем самым быстро разрушает РНК, ингибирует ферменты, в частности карбоксипептидазу. Хроническое отравление свинцом и

накопление его в организме человека даже при низких уровнях содержания приводит к снижению коэффициента интеллекта, ослаблению внимания, потере работоспособности, гиперактивности, расстройству поведения, отставанию в развитии. Известно также, что свинец неблагоприятно действует на течение и исход беременности [3, с. 103]. Наличие свинца в органах плода, а иногда в плаценте приводит к преждевременным родам, выкидышам, внутриутробной гибели плода. Особенно опасно воздействие свинца на маленьких детей, оно вызывает умственную отсталость и хроническое заболевание мозга [2, с. 13].

Источниками мышьяка могут быть выбросы предприятий стекольной, радиоэлектронной, металлургической промышленности, автомобилей. Мышьяк относится к числу наиболее сильных и опасных ядов. В присутствии кислорода быстро образует очень ядовитый мышьяковистый ангидрид. При пероральном отравлении высокая концентрация мышьяка наблюдается в желудке, кишечнике, печени, почках и поджелудочной железе, при хроническом отравлении постепенно накапливается в коже, волосах и ногтях. Ингибирования различных ферментов нарушает метаболизм. В процессе отравления первыми страдают аксоны, что приводит к периферической нейропатии и параличу конечностей. Мышьяк считается канцерогенным и очень опасным для организма человека.

Является очень токсичным, зачастую его называют «химическим СПИДом». Таллий вмешивается в процесс окислительного фосфорилирования, уничтожая активность АТФазы. Проникая через клеточные мембраны, образует сильные комплексы, например, нерастворимый комплекс с рибофлавином. Это приводит к нарушению метаболизма серы и разрушению иммунной системы. Отравление таллием приводит к гастроэнтеритам, периферической нефропатии, при большой абсорбции к смерти. Через 2-3 недели после небольшого отравления у человека выпадают волосы.

Цинк является биологически значимым микроэлементом, в виде двухвалентного элемента входит в состав свыше 20 ферментов, включая участвующие в обмене нуклеиновые кислоты. Его содержание в организме взрослого человека равняется примерно 2 г. Однако, несмотря на небольшие количества, этот микроэлемент оказывает огромное влияние на сотни биохимических реакций. Большая часть цинка концентрируется в мышцах, а самая высокая содержание — в простате. В крови он присутствует в эритроцитах как кофактор карбоангидразы. Микроэлемент есть в составе инсулина. Отсутствие цинка тормозит продукцию гормонов надпочечников, щитовидной железы, соматотропина (гормон роста), тестостерона и эстрогенов. Особенно важен этот микроэлемент для организма мужчины: он обеспечивает нормальное функционирование предстательной железы и продукцию спермы.

Избыток цинка нарушает баланс метаболического равновесия между другими металлами, ухудшает работу иммунной системы. Разбалансировка отношения цинк/медь является главным причинным фактором в развитии ишемической болезни сердца. Избыточное потребление солей цинка может приводить к острым кишечным отравлениям с тошнотой. Кроме того, цинк участвует в процессах передачи нервных импульсов. С этим связано его высокое содержание в клетках сетчатки глаза. Микроэлемент обостряет восприятие вкусов и запахов, влияет на сократительную способность мышц. Также цинк нужен для нормального функционирования иммунной системы, кроветворения, работы сальных желез. Цинк необходим для образования печенью алкогольдегидрогеназы, ответственной за обезвреживание спиртов, участвует в продукции ферментов, нужных для синтеза нуклеиновых кислот (ДНК, РНК), деления клеток, образования и распада белков и углеводов.

Медь является необходимым кофактором для нескольких важнейших ферментов, катализирующих разнообразные окислительно-восстановительные

реакции, без которых нормальная жизнедеятельность невозможна. Известно более 30 белков и ферментов, в состав которых входит медь. Медь входит в состав цитохромоксидазы — терминального звена митохондриальной цепи переноса электронов, играющей важную роль в процессах биологического окисления и окислительного фосфорилирования генерации АТФ; моноаминооксидазы, катализирующей окислительное дезаминирование катехоламинов, серотонина и др., а также лизина (лизилоксидаза). Последний процесс определяет образование поперечных сшивок в молекуле коллагена и эластина. Медь участвует в построении тирозиназы, катализирующей превращение тирозина в дофамин и меланины. Отсутствие или недостаточная активность тирозиназы приводит к альбинизму, а ее черезмерная активность — к развитию меланомы (быстропрогрессирующего рака кожи). Их биологическая роль связана с процессами гидроксилирования, переноса кислорода, электронов и окислительного катализа. Около 95 % меди в организме присутствует в составе гликопротеина крови церулоплазмина. Церулоплазмин содержит 8 атомов меди и обладает антиоксидантными свойствами, участвует в метаболизме железа, окисляя двухвалентное железо в трехвалентное, способное транспортироваться трансферрином.

В тканях здорового организма концентрация меди в течение всей жизни поддерживается строго постоянной. В норме существует система, препятствующая непрерывному накоплению меди в тканях путем ограничения ее абсорбции или стимуляции ее выведения. Хронический избыток меди в тканях при соответствующих заболеваниях вызывают токсикоз: ведет к остановке роста, гемолизу, снижению содержания гемоглобина, к деградации тканей печени, почек, мозга.

Необходимо отметить, что не все из перечисленных элементов являются только ядовитыми, некоторые из них в малых количествах необходимы для нормальной жизнедеятельности человека, растений и животных. Тяжелые металлы в допустимых концентрациях оказывают положительное влияние на живые организмы [4, с. 154].

Объем информации о роли дефицита микроэлементов во внешней среде в формировании болезней продолжает увеличиваться. Токсичность «металлических ядов» объясняется связыванием их с соответствующими функциональными группами белковых и других жизненно важных соединений в организме. В результате нарушаются нормальные функции соответствующих клеток и тканей в организме и наступает отравление, которое в ряде случаев заканчивается смертью.

1. Авцын А.П. Микроэлементозы человека. / Авцын А.П., Жаворонков А.А., Риш М.А., Строчкова Л.С. // М: Медицина, 1991. 496 с.

2. Зайцева О.Е. Особенности накопления микроэлементов в плаценте и пуповине при нормальной осложненной гестозом беременности. Автореферат дисс. канд. мед .наук. Москва, 2006.

3. Зинина О.Т. Влияние некоторых тяжелых металлов и микроэлементов на биохимические процессы в организме человека. // Избранные вопросы судебно-мед.экспертизы. Хабаровск, 2001. № 4. С. 99-105.

4. Имангулов Ш.А. Рекомендации по кормлению сельскохозяйственной птицы. // Сергиев Посад. ВНИТИП-2004. 243 с.

5. Ильин В.П. Тяжелые металлы в системе почва-растения. // Новосибирск: Наука, 1991.

6. Кашкина Т.А. Влияние тяжелых металлов на биохимические процессы в организме // Научные достижения биологии, химии, физики: сб. ст. по матер. XII междунар. науч.-практ. конф. Новосибирск: СибАК, 2012.

7. Теплая Г.А. Тяжелые металлы как фактор загрязнения окружающей среды (обзор литературы) // Астраханский вестник экологического образования. № 1 (23), 2013., С. 182-192.

8. Mertz W. Clinical and public health significance of chronium // Current topics in nutrition a.disease. New York., 1982. P. 315-323.

ПРИЕМЫ САМООБОРОНЫ ДЛЯ МЕДИЦИНСКИХ РАБОТНИКОВ Яшкулов С.Д.

Яшкулов Станислав Дорджиевич — преподаватель физической культуры,

Краевое государственное бюджетное профессиональное образовательное учреждение Норильский медицинский техникум, г. Норильск, Красноярский край

Аннотация: в статье анализируются ситуации, в которых медицинские работники сталкиваются с проявлением агрессии со стороны пациентов и их родственников, как правило, находящихся в состоянии алкогольного или наркотического опьянения, сильного душевного волнения. Сотрудники частных охранных предприятий не могут должным образом обеспечить охрану общественного порядка и не в каждом учреждении здравоохранения имеется кнопка вызова наряда полиции. Законы и нормативно-правовые акты РФ не обеспечивают защиту медицинских работников в сложных условиях напряженной работы.

Анализ причин получения травм при нападении на медицинских работников показывает, что большинство из них не получили хорошей физической подготовки при обучении. Зачастую подготовка таких специалистов здравоохранения не велась вообще. Отсутствие тактической и психологической подготовки, курса самообороны приводило к неправильным и необдуманным действиям работников здравоохранения.

Навыки самообороны необходимы медицинским работникам как в мирное, так и военное время.

Ключевые слова: медицинский работник, приемы самообороны.

Медицинские работники сталкиваются с проявлением агрессии со стороны пациентов и их родственников, как правило, находящихся в состоянии алкогольного или наркотического опьянения, сильного душевного волнения. Особенно в таких отраслях медицины как скорая медицинская помощь, реаниматология, психоневрологический диспансер. Достаточно привести в пример работу медицинских учреждений в выходные и праздничные дни, когда сотрудники частных охранных предприятий не могут должным образом обеспечить охрану общественного порядка и не в каждом учреждении здравоохранения имеется кнопка вызова наряда полиции.

Ножевые и огнестрельные ранения, телесные повреждения различной степени тяжести, употребление наркотических средств и психотропных веществ без назначения врача уже делает граждан потенциальными пациентами медицинских учреждений. Законы и нормативно-правовые акты РФ не обеспечивают защиту медицинских работников в сложных условиях напряженной работы. В последнее время участились случаи нападения и применения насилия в отношении работников здравоохранения.

Анализ причин получения травм при нападении на медицинских работников показывает, что большинство из них не получили хорошей физической подготовки

Влияние тяжелых металлов на организм человека исследовательская работа

МЕТАЛЛЫ И ЗДОРОВЬЕ ЧЕЛОВЕКА

1 Казанский филиал Федерального государственного бюджетного образовательного учреждения высшего образования «Российский государственный университет правосудия» (г. Казань).

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке «Файлы работы» в формате PDF

Целью данной работы является изучить роль металлов как биогенов и как загрязнителей природной среды, их положительное и отрицательное воздействие на биологические системы и на организм человека.

1) Расширить представления о специфических свойствах металлов, их двойственной роли в природе, последствиях воздействия металлов или их соединении на биологические системы.

2) Раскрыть причины и основные источники загрязнения окружающей среды металлами.

3) Изучить влияние гипо- и гиперконцентрации металла на состояние здоровья человека.

Предметом исследования является:

1) Почва и растения на парковой зоне возле Татарской государственной филармонии на пересечении улиц Павлюхина и Эсперанто г. Казани, вода из озера «Кабан» на наличие тяжелых металлов, влияние их на здоровье человека.

2) Медицинские карты людей, проживающих в этом районе

Актуальность рассматриваемой темы заключается в том, что металлы вызывают глобальные экологические проблемы. А экология в свою очередь влияет на здоровье человека.

1. Нахождение металлов и их соединений в природе

Менделеевская таблица химических элементов, составляющие все живое и неживое во Вселенной, на три четверти состоит из металлов. Десятки из них широко применяются в технике и быту. Остальные с каждым годом все глубже внедряются в практику.

Большинство металлов в природе встречаются в виде руд и соединений. Они образуют оксиды, сульфиды, карбонаты и другие химические соединения. Так, содержание некоторых металлов в земной коре следующее:

Большое количество натрия и магния содержится в морской воде: до 1,05%. В малых количествах они присутствуют в растениях, живых организмах (играя при этом важную роль).

В природе металлы встречаются в различном виде:

— в самородном состоянии: серебро, золото, платина, медь, иногда ртуть (золото, серебро и платина относятся к драгоценным металлам).

— в виде оксидов: магнетит Fe3O4, гематит Fe2О3 и др.

сульфидов: галенит PbS, киноварь НgS

хлоридов: сильвин КСl, галит NaCl, сильвинит КСl*NаСl, карналлит КСl*МgСl2*6Н2О

карбонатов: мел, мрамор СаСО3, магнезит МgСО3. [2,c 624]

Многие металлы часто сопутствуют основным природным минералам: скандий входит в состав оловянных, вольфрамовых руд, кадмий — в качестве примеси в цинковые руды, ниобий и тантал — в оловянные. Железным рудам всегда сопутствуют марганец, никель, кобальт, молибден, титан, германий, ванадий. Бронза, как известно, сохраняется в земле, точнее — в ее культурном слое, тысячелетия. Железо, напротив, довольно быстро возвращается в первозданное состояние — ржавление превращает его снова в соединения железа с кислородом.

Для получения чистых металлов и дальнейшего их применения необходимо выделить их из руд и провести очистку. При необходимости проводят легирование и другую обработку металлов. Изучением этого занимается наука металлургия.

Металлургия различает руды чёрных металлов (на основе железа) и цветных (в их состав не входит железо, всего около 70 элементов). Исключением можно назвать около 16 элементов: это благородные металлы (золото, серебро и др.), и некоторые другие (например, ртуть, медь), которые присутствуют без примесей. [3]

2. Металлы в организме человека

В организме человека находятся 81 химический элемент из 92 встречающихся в природе. Организм человека – это сложная система, похожая на химическую лабораторию. Трудно себе представить, но ежедневно наше самочувствие, настроение и даже аппетит могут зависеть от минеральных веществ. Без них бесполезным оказываются витамины, невозможны синтез и распад белков, жиров и углеводов.

Рис. 1. Металлы в организме человека. [7]

2.1. Биологическая роль некоторых металлов в организме человека.

Золото. В средневековье алхимики считали золото совершенством, а остальные металлы – ошибкой в акте творения и, как известно, прикладывали большие усилия для ликвидации этой ошибки. Идею введения золота в медицинскую практику приписывают Парацельсу, который провозгласил, что целью химии должно быть не превращение металлов в золото, а приготовление лекарств. Лекарственные препараты из золота и его соединений пытались применять при многих заболеваниях. Им лечили волчанку, туберкулез. У людей, чувствительных к золоту, оно может вызвать нарушение состава крови, реакцию со стороны почек, печени, влиять на настроение, рост зубов, волос.

Алюминий. Алюминиевую посуду называют посудой бедняков, так как этот металл способствует развитию старческого атеросклероза. При приготовлении пищи в такой посуде алюминий частично переходит в организм, где и накапливается.

Цинк. Оптимальная интенсивность поступления цинка в организм 15 мг/сут, суточная потребность составляет 50 мг. Дефицит цинка может развиваться при недостаточном поступлении этого элемента в организм (1 мг/сут и менее), а порог токсичности составляет 600 мг/сут. В организм человека 99 % цинка попадает с пищей. Особенно много цинка содержится в говядине, печёнке, устрицах (400 мг в 100 г продукта), пшеничных зародышах. Цинк поступает в растение в виде иона Zn 2+ . Для лучшего усвоения цинка организмом необходимы витамины А и В6. Усвоению цинка препятствуют медь, марганец, железо и кальций. В организме взрослого человека содержится 3 г цинка на 70 кг. Цинк можно обнаружить во всех органах и тканях.

Ежедневно около 11 мг цинка выводится из организма, 5 % из этого количества выводится с мочой.

Таблица. 1. Содержание Zn в органах и тканях.

В медицине цинкосодержащий препарат сульфат цинка используется при дефиците цинка, для лечения болезней кожи, волос, ногтей, цирроза печени и при заживлении ран. Препарат несовместим с карбонатами, сульфитами – осаждение нерастворимых солей цинка; с восстановленным магнием выпадает осадок цинка.

Медь. Среднее содержание меди в человеческом организме 150 мг на 70кг. В организм медь поступает в основном с пищей. Много меди содержится в морских продуктах, бобовых, капусте, картофеле, крапиве. Содержание меди в 100 г огурцов составляет 8,4 мг. В желудочно-кишечном тракте адсорбируется до 95 % поступившей в организм меди. В крови медь связывается с сывороточным альбумином (12-17%), аминокислотами (10-15%), транспортным белком (12-14%). Оптимальная интенсивность поступления меди в организм составляет 2-3 мг/сут. Суточная потребность организма в меди – 2 мг.

При ожогах кожи фосфором её обильно смачивают 5 %-ным раствором сульфата меди (II).

Марганец. Соединения марганца в основном поступают в организм с пищей. Много марганца содержится в ржаном хлебе, пшеничных и рисовых отрубях, сое, горохе, свёкле (содержание марганца в 100 г свёклы составляет 0,65 мг). Марганец поступает в растение в виде ионов Mn 2+ . В теле человека содержится 2,2·10 20 атомов марганца. Среднесуточная потребность человека в марганце составляет 5-9 мг. Биоусвояемость марганца невысока, всего 3-5 %. Оптимальная интенсивность поступления марганца в организм 5-9 мг/сут; уровень, приводящий к дефициту, и порог токсичности оцениваются в 1 и 40 мг/сут соответственно.

В медицинской практике для промывания ран применяют раствор перманганата калия.

Калийсодержащий препарат перманганат калия несовместим в жидких лекарственных формах с восстановителями – происходит взаимное разложение; с бромидами, иодидами, хлоридами – выделяются галогены; с солями двухвалентного железа – образуется трёхвалентное железо; с соляной кислотой и её солями образует свободный хлор, с аммиаком – нитраты.

Читать статью  Турбулентность 3: Тяжёлый металл (2000)

Железо. В организме содержится 3г железа, из них 2 г в крови. Железо входит в состав гемоглобина. Недостаточное содержание железа приводит к головной боли, быстрой утомляемости. Академик Ферсман говорил, что железо – не только основа всего мира, самый главный металл окружающей нас природы. Оно основа культуры и промышленности. Оно орудие войны и мирного труда, и во всей таблице Менделеева невозможно найти другой такой элемент, который был бы так связан с прошлыми, настоящими и будущими судьбами человечества. [1,c 99-105]

2.2. Влияние гипо- и гиперконцентрации металла на состояние здоровья человека

Нарастающее производство металлов имеет далеко идущие последствия.

Во-первых, на отдельных участках биосферы создаются такие значительные концентрации металлов, которые не могли возникнуть в результате природных геохимических процессов.

Во-вторых, в результате производственной деятельности объединяются такие металлы, геохимия которых существенно различается и которые в природе стремятся к разделению.

В-третьих, человек захватывает и концентрирует металлы в совершенно иных соотношениях, чем они находятся в земной коре. В результате непропорциональной по отношению к кларкам добычи на поверхности суши нарушаются соотношения между металлами.

Человечество затрачивает колоссальные усилия и энергию на то, чтобы выделить и сконцентрировать металлы, но при этом вступает в противоречие с направленностью геохимических процессов и законной химии. Однако в процессе хозяйственного использования металла восстанавливается равновесие, нарушенное человеком.

Помимо этого, огромное количество железа истирается, распыляется во время работы различных машин. Люди борются с этим, возвращая часть испорченного металла на переплавку, но при этом также происходят невосстанавливаемые потери.

В результате сжигания больших масс каменного угля микропримеси металлов поступают с дымом в атмосферу и разносятся по всей поверхности земного шара. Если рассеяние металлов, производящиеся горно-металлургической промышленностью, протекает с умеренной скоростью, то распыление металлов через атмосферу посредством сотен тысяч дымовых труб происходит очень быстро. Каждый год сотни тысяч тонн металлов рассеиваются в атмосфере. При сжигании угля распространённые металлы в значительно меньшем количестве, чем они добываются из недр.

Токсическими свойствами обладают практически все тяжелые металлы, когда их содержание превышает верхний порог концентрации. Ниже представлена таблица, в которой отражены биологическая роль металлов и их токсическое действие. [4]

Табл. 2. Влияние гипо- и гиперконцентрации металла на состояние здоровья человека [4]

Токсическое действие избытка металла

Дефицит приводит к психическому расстройству.

Избыток вызывает общую заторможенность, нарушение дыхания и сердечного ритма, слабость, сонливость, потерю аппетита, жажду, а также дерматит лица и рук.

Поддерживает у человека нормальную возбудимость мышечных клеток, поддерживает кислотно-щелочной баланс в организме, принимает участие в регуляции сердечной деятельности, удерживает воду в организме.

Избыток приводит к нарушению водного баланса, сгущению крови, нарушению функции почек, сердечно-сосудистой системы, а также к общему нарушению обмена веществ.

Регулирует белковый и углеводный обмен, влияют на процессы фотосинтеза и рост растений. Необходим для нормального функционирования всех мышц, особенно сердечной, способствует выделению избыточного натрия, избавляя организм от лишней воды и устраняя отеки.

При избытке происходит усиление двигательной активности, нарушение сердечного ритма, нарушение углеводного, жирового и белкового обмена.

Проявляет антисептическое и сосудорасширяющее действие, понижает артериальное давление и содержание холестерина в крови, играет большую роль в профилактике рака. Благотворно влияет на органы пищеварения.

Повышенное содержание приводит к нарушению минерального обмена. Нарушение баланса обмена магния вызывает повышенную смертность от сердечно-сосудистых заболеваний и болезней желудочно-кишечного тракта.

Необходим для процессов кроветворения, обмена веществ, для уменьшения проницаемости сосудов, нормального роста скелета, благотворно влияет на состояние нервной системы, оказывает противовоспалительное действие.

При избытке кальция возникает цистит. Если кальций попадает в организм в виде цементной пыли, то страдают органы дыхания, у детей снижается возбудимость нервной системы и обонятельного анализатора.

Влияет на процесс образования костей.

При избытке стронция поражаются костная ткань, печень, кровь; наблюдается повышенная ломкость костей, выпадение волос.

Содержится в легких, печени, костях, головном мозге; действует на пищеварительную и нервную систему.

Избыток приводит к нарушению минерального обмена

При высоких концентрациях является мутагеном и онкогеном.

3. Состояние природной среды региона. Наличие тяжелых металлов в природе.

3.1. Исследование проб почвы и воды на наличие тяжелых металлов

Отбираем пробы на следующих территориях:

1) На берегу озера Кабан,

2) на парковой зоне возле Татарской государственной филармонии на пересечении улиц Павлюхина и Эсперанто г. Казани,

3) Вода из озера Кабан.

1 этап: Отбор пробы почвы и подготовка образцов к химическому анализу.

Для проведения химического анализа отбираем почву на глубине 10 см. Затем почву высушиваем, измельчаем в ступке, затем просеиваем через сито.

2 этап: Приготовление вытяжки.

Сухую, измельченную почву заливаем 1 М раствором азотной кислоты (10г почвы на 50 мл кислоты) и оставляем на сутки, потом смесь фильтруем и упариваем до необходимого объёма.

3 этап: Определение содержания железа (ионов Fe 3+ ), меди (ионов Cu 2+ ), никеля (ионов Ni 2+ ), свинца (ионов Pb 2+ ) в почвенной вытяжке.

1) Определение железа (Fe 3+ )

В две пробирки вливаем по 3 мл вытяжки. В первую пробирку приливаем несколько капель раствора желтой кровяной соли K4[Fe(CN)6] , во вторую несколько капель красной кровяной соли.

Наблюдаем: в первой пробирке темно-синий осадок берлинской лазури, во второй зелёное окрашивание.

Вывод: В почве имеются соединения железа.

2) Определение меди (Cu 2+ )

В две пробирки наливаем по 5 мл фильтрата. В первую пробирку добавляем раствор аммиака. Во вторую раствор желтой кровяной соли.

Наблюдения: В первой пробирке раствор окрашивается в интенсивно-синий цвет, во второй красно-бурый осадок.

Выводы: В фильтрате есть ионы меди.

3) Определение никеля (Ni 2+ )

В две пробирки, содержащие по 3 мл фильтрата, приливаем:

1 — раствор щелочи с бромной водой;

2 — реактив Чугаева (диметилглиоксима)

Наблюдения: изменений нет.

Выводы: В почве нет соединений никеля.

4) Определения свинца (Pb 2+ )

Берем две пробы по 5 мл. В одну добавляем 3%ный раствор иодида калия KI, а во вторую – 10 %-ный раствор хромата калия (K2CrO4)

Наблюдения: Выпадает осадок желтого цвета.

Выводы: В пробе почвы из территории берега озера Кабан и парковой зоны на парковой зоне возле Татарской государственной филармонии на пересечении улиц Павлюхина и Эсперанто г.Казани соединения свинца не обнаружено.

АНАЛИЗ СОДЕРЖАНИЯ ИОНОВ ТЯЖЕЛЫХ МЕТАЛЛОВ В ОРГАНИЗМЕ ШКОЛЬНИКОВ И ОПРЕДЕЛЕНИЕ ИХ ВЛИЯНИЯ НА СОСТОЯНИЕ ЗДОРОВЬЯ

Автор работы награжден дипломом победителя II степени

Актуальность выбранной темы

Американские ученые исследовали группу детей, у которых были проблемы в обучении, дети имели слабую память, низкие учебные навыки. Оказалось в их организме превышено содержание тяжелых элементов, особенно ионов свинца. У городских жителей (в крупных городах) свинец накапливается в организме больше, чем у жителей сельских местностей, так как горожане вдыхают свинец с пылью в воздухе.

Нас заинтересовал этот вопрос и мы захотели провести свое исследование группы учащихся нашей школы из экологически чистого населенного пункта, на содержание в их организме ионов тяжелых металлов. Мы решили исследовать волосы этих учеников.

Цель нашей работы:

Исследовать волосы школьников разных возрастов на содержание в них ионов тяжелых металлов( Cd 2+ Fe 2+Pb2+ Al 3+ ) , а также выяснить влияет ли избыток этих ионов на интеллектуальные способности человека.

Задачи , которые мы поставили перед собой:

Изучить научную информацию о роли элементов – меди, кадмия, свинца и железа для живого организма

Практически исследовать волосы на содержание в них ионов тяжелых металлов

Сделать выводы по полученным результатам для каждого обследуемого ученика и разработать некоторые рекомендации

Анализ источников информации

Экспериментальный . Работа была выполнена в Научном парке на базе ресурсного центра Института химии СПбГУ по направлению Химии под руководством А.А.Проявкина –кандидата химических наук. Исследование проб проводилось на аппарате атомно-эмиссионном спектрометре с индуктивно-связанной плазмой

II. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

II Теоретическая часть: 1.Роль кадмия в организме человека (Cd)

Кадмий относится к тяжелым и очень токсичным металлам. Кадмий накапливается в почках, печени ,участвует в нескольких ферментативных реакциях. Скорость выведения кадмия очень низкая, поэтому количество этого тяжелого металла в организме с годами только увеличивается, что может привести к проблемам со здоровьем. Даже незначительное повышение уровня кадмия в крови отрицательно сказывается на деятельности головного мозга Курильщики подвергают свой организм загрузкой кадмием : одна пачка сигарет содержит примерно 3-4 мкг, из них 1 мкг полностью усваивается организмом

2. Физиологическая роль меди (Cu)

Медь накапливается в печени. Медь необходима для процессов образования гемоглобина и в этом смысле не подлежит замене другими элементами. Медь также участвует в процессах роста и размножения. Участвует в процессах пигментации, так как входит в состав меланина. Медь присутствует в системе антиоксидантной защиты организма. Этот биоэлемент повышает устойчивость организма к некоторым инфекциям, связывает микробные токсины и усиливает действие антибиотиков. Медь обладает выраженным противовоспалительным свойством, смягчает проявления аутоиммунных заболеваний , способствует усвоению железа.

3.Физиологическая рольжелеза (Fe)

Общее содержание железа в организме человека составляет около 4,25 г. Из этого количества 57% находится в гемоглобине крови, 23% — в тканях и тканевых ферментах, а остальные 20% — депонированы в печени, селезенке, костном мозге и представляют собой «физиологический резерв» железа. Средний пищевой рацион человека должен содержать не менее 20 мг железа, и 30 мг для беременных. При недостатке железа в организме развивается железодефицитная анемия (малокровие). Но при избытке железа наблюдаются явления отравления железом, которые выражаются рвотой, диареей (иногда с кровью), падением АД, параличом ЦНС и воспалением почек. Избыток железа в организме может привести к дефициту меди, цинка, хрома и кальция, а также к избытку кобальта.

4.Физиологическая роль свинца (Pb)

Свинецспособен накапливаться в костях, печени, почках, волосах и зубах. Установлено, что вдоль автомобильных дорог содержание свинца намного выше. Микроэлемент свинец, в большем или меньшем количестве, имеется в организме каждого человека. В среднем, организм человека (в возрасте от 20 лет и старше) содержит в себе около 2-х мг свинца. Этого количества вполне достаточно для всех внутренних обменных процессов, а большее количество может только навредить здоровью (отравление тяжёлым металлом). Микроэлемент свинец может начать действовать как канцероген и стать причиной появления раковых клеток, а в дальнейшем – развития раковых опухолей.

III. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Практическая часть была выполнена в Научном парке на базе ресурсного центра Института химии СПбГУ по направлению Химии под руководством А.А.Проявкина –кандидата химических наук.

1этап – пробоподготовка для анализа волос.

Были отобраны образцы волос путем остригания отрезков длиной не менее 1см у 12 добровольцев. В качестве добровольцев выступили учащиеся нашей школы:

1класс -1чел.(мальчик 8лет)

2класс -2чел( мальчик +девочка) 9лет

4клас – 1чел (мальчик11лет)

9класс- 4чел ( 3мальчика +1 девочка) 15-16лет

11кл- 3чел (2мальчика+1 девочка) -17-18 лет

Взрослый мужчина(папа одного из учеников)- 38лет

2.Образцы волос были взвешены на электронных весах.

3.Затем навеску каждого образца волос помещали в термостойкий химический стакан, добавляли 10мл концентрированной азотной кислоты и медленно (в течение около получаса) упаривали на электрической плитке примерно до 1мл в вытяжном шкафу.

4.К полученному раствору приливали 0,5мл 30% раствора пероксида водорода и после нагревания в течение 1мин. добавляли 10мл разбавленной (1:99) азотной кислоты.

5.Вновь упаривали раствор до объема 1мл , после чего в него добавили 4мл разбавленной азотной кислоты и перенесли содержимое стакана в мерную колбу на 50мл.

6.Стаканы ополоснули раствором разбавленной азотной кислотой , который тоже сливали в мерные колбы на 50мл.

7.Общий объем растворов доводили до 10мл разбавленной азотной кислотой.

2 этап: Анализ проб на аппарате атомно-эмиссионном спектрометре с индуктивно-связанной плазмой. Метод основан на измерении интенсивности излучения света, испускаемого на определенных длинах волн атомами, возбужденными индуктивно-связанной аргоновой плазмой, и используется для определения концентраций исследуемых элементов. . Спектрометр обладает возможностью одновременного многоэлементного анализа (более 30 элементов), низкими пределами обнаружения (от 0,0001 мг/дм3 )

А) Результаты исследования на содержание в пробах волос элемента кадмия Cd 2+ Содержание кадмия Cd 2+ в волосах в норме 0,05-0,25 мг/л (см.Табл.№1)

ВЛИЯНИЕ ТЯЖЕЛЫХ МЕТАЛЛОВ НА ОРГАНИЗМ ЧЕЛОВЕКА Текст научной статьи по специальности «Нанотехнологии»

Аннотация научной статьи по нанотехнологиям, автор научной работы — Махниченко Анжела Сергеевна, Пащенко Анна Евгеньевна

Данная статья посвящена вопросу влияния тяжелых металлов на организм человека . Рассмотрен термин тяжелые металлы , источники их поступления в окружающую среду , а также приведены полезные советы.

Похожие темы научных работ по нанотехнологиям , автор научной работы — Махниченко Анжела Сергеевна, Пащенко Анна Евгеньевна

Микроэлементозы — как возможные и реальные экологически обусловленные заболевания в Астраханском регионе

Текст научной работы на тему «ВЛИЯНИЕ ТЯЖЕЛЫХ МЕТАЛЛОВ НА ОРГАНИЗМ ЧЕЛОВЕКА»

ВЛИЯНИЕ ТЯЖЕЛЫХ МЕТАЛЛОВ НА ОРГАНИЗМ ЧЕЛОВЕКА

Махниченко Анжела Сергеевна, Астраханский государственный технический университет, г. Астрахань

Пащенко Анна Евгеньевна, Астраханский государственный технический университет, г. Астрахань

Аннотация. Данная статья посвящена вопросу влияния тяжелых металлов на организм человека.

Рассмотрен термин тяжелые металлы, источники их поступления в окружающую среду, а также приведены полезные советы.

Ключевые слова: тяжелые металлы, организм человека, окружающая среда, влияние, загрязнение

В настоящее время состояние окружающей среды является важнейшим фактором, определяющим жизнедеятельность и развитие человека и общества в целом. К одним из наиболее распространенных химических загрязнений относится загрязнение тяжелыми металлами. Высокое содержание многих химических элементов и их соединений, обусловлены природными и техногенными процессами, происходящими в окружающем нас мире.

Тяжелые металлы обнаружены во всех природных средах: атмосфере, почве, воде, растениях, животных. По токсичности они занимают второе место в загрязнении окружающей среды и составляют группу наиболее опасных загрязнителей биосферы.

Необходимо отметить, что тяжелые металлы играют важную роль в биосфере, присутствуя в живых организмах в ничтожно малых концентрациях, они выполняют важные функции, но достигая определенной, отличной от нормы, концентрации, они оказывают губительное воздействие на организм человека. Они способны накапливаться в тканях, почках, печени, вызывая серьезные физиологические нарушения, токсикоз, аллергию, онкологические

заболевания, отрицательно влияют на генетическую наследственность.

Тяжелые металлы способны образовывать высокотоксичные металлорганические соединения (МОС), так как обладают высокой способностью к многообразным химическим, физико-химическим и биологическим реакциям, изменять формы нахождения при переходе от одной природной среды в другую, т.е. мигрировать. Миграция соединений тяжелых металлов происходит из-за того, что многие из них имеют переменную валентность и участвуют в окислительно-восстановительных процессах.

Большой интерес представляют те металлы, которые загрязняют атмосферу в значительном объеме использующиеся в производственной деятельности. К ним относят свинец, ртуть, кадмий, цинк, висмут, кобальт, никель, медь, олово, сурьму, ванадий, марганец, хром, молибден и мышьяк, именно они представляют серьезную опасность не только для человека, но и для всех организмов на Земле. Располагая сведениями о содержании тяжелых металлов у млекопитающих и растений, можно прогнозировать их влияние на организм человека.

Термин тяжелые металлы, характеризующий группу химических элементов, загрязняющих окружающую среду, получил значительное распространение в настоящее время. Авторы различных научных публикаций трактуют этот термин по-разному. В связи с этим список тяжелых металлов будет включать разные элементы. Существуют классификации, основанные на атомной массе, плотности, токсичности, распространенности в природной среде, степени вовлеченности в природные и техногенные циклы.

Немаловажную роль в классификации тяжелых металлов играет их высокая токсичность. В зависимости от степени токсикологического воздействия химические вещества в соответствии с ГОСТом 17.4.1.0283 подразделяют на три класса:

— I класс (высоко опасные) — As, Cd, Hg, Be,Se, Pb, Zn;

— II класс (умеренно опасные) — B, Co, Ni, Mo, Cu, Sb, Cr;

— III класс (мало опасные) — Ba, V, W, Mn, Sr.

К тяжелым металлам относится более 40 химических элементов периодической таблицы Д.И. Менделеева с высокой относительной атомной массой и относительной плотностью: V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, Cd, Sn, Hg, Pb, Bi и др. Когда они находятся в естественных концентрациях, к ним применяют термин «микроэлементы», участвуют в биологических процессах. По А.П. Виноградову (1957), под микроэлементами подразумевают химические элементы, необходимые для растительных и животных организмов.

Согласно сведениям, представленным в «Справочнике по элементарной химии» под ред. А.Т.Пилипенко (1977), к тяжелым металлам отнесены элементы, плотность которых более 5 г/см3. Если исходить из этого показателя, тяжелыми следует считать 43 из 84 металлов Периодической системы элементов. По другой

классификации, Н.Ф. Реймерса, тяжелые металлы имеют плотность больше 8 г/

см . Следовательно, получится меньше таких элементов: Pb, Zn, Bi, Sn, Cd, Cu, Ni, Co, Sb. В теории, тяжелыми металлами можно назвать все элементы таблицы Менделеева, начиная с ванадия, но что это не совсем так из-за того, что не все элементы находятся в природе в токсичных пределах. По мнению исследователей, занимающихся практической деятельностью, связанной с наблюдением состояния окружающей среды, к тяжелым металлам включают только свинец, ртуть, кадмий и мышьяк. Ю.А. Израэль относит к ним Pb, Hg, Cd, As. Согласно решению Целевой группы по выбросам тяжелых металлов, работающей под эгидой Европейской Экономической Комиссии ООН и занимающейся сбором, и анализом информации о выбросах загрязняющих веществ в европейских странах, только Zn, As, Se и Sb были отнесены к тяжелым металлам.

Как в среде нашего обитания появляются тяжелые металлы? Источниками их поступления в окружающую среду являются природные и техногенные процессы. Природными или естественными источниками являются горные породы, но их насыщенность тяжелыми металлами невелика. Кроме того, естественными источниками являются термальные воды и рассолы (Br, Sr, As, Pb, V, Se, Cu и др.), космическая и метеоритная пыль, вулканические газы. Большая часть таких элементов попадает в биосферу — в виде сухих осаждений и атмосферных осадков (15-25%), которые удаляют данные загрязнители, поступающие в атмосферу в виде аэрозольных выбросов.

Техногенное поступление тяжелых металлов связано с присутствием их в сточных водах различных промышленных объектов, черной и цветной металлургии, машиностроением, они также поступают в окружающую среду с бытовыми стоками, с дымом и пылью, а часть элементов входит в состав пестицидов и удобрений и является источником загрязнения окрестных прудов. Повышение концентрации тяжелых металлов в природных водах часто связано с закислением, выпадением кислотных осадков, переходу металлов в свободное состояние.

В биосферу загрязнители поступают за счет возрастания объемов промышленных выбросов и отходов. Основными техногенными источниками атмосферного загрязнения являются тепловые электростанции (27%), предприятия черной металлургии (24,3%), предприятия по добыче и переработке нефти (15,5%), транспорт (13,1%), предприятия цветной металлургии (10,5%), а также предприятия по добыче и изготовлению строительных материалов (8,1%), химическая промышленность (1,3%).

К основным отраслям, с которыми связано загрязнение окружающей среды ртутью, относят горнодобывающую, металлургическую, химическую, приборостроительную, электровакуумную и фармацевтическую.

Наиболее интенсивные источники загрязнения окружающей среды кадмием — металлургия и гальванопокрытия, а также сжигание твердого и жидкого топлива.

Если рассмотреть это вопрос с точки зрения химии, то самым главным инициатором повышения уровня растворимых солей тяжелых металлов в окружающей среде являются кислотные дожди. Кислотные дожди снижают плодородие почв, ухудшают здоровье населения. Уменьшение кислотности среды сопровождается переходом тяжелых металлов из малорастворимых соединений в более растворимые в почвенном растворе.

С одной стороны, многие тяжёлые металлы, такие как Fe, Си, 7п, Мо, являются необходимыми для нормальной работа организма человека, так как участвуют в биологических процессах. С другой стороны, накопление данных элементов в тканях организма в большом количестве может оказывать вредное воздействие, вызывая ряд заболеваний. Не имеющие полезной роли в биологических процессах металлы, такие как свинец и ртуть, определяются как токсичные металлы. Металлы, не несущие пользы организму, такие как ^ и РЬ, считаются токсичными. А часть элементов, токсичная для одних организмов,

Загрязнение окружающей среды — процесс, происходящий в пространстве и во времени, поэтому реакцию человеческого организма на загрязнения иногда очень трудно предугадать. Постоянный рост поступлений токсичных веществ в окружающую среду, в первую очередь, сказывается на здоровье населения, ухудшает качество продуктов сельского хозяйства, снижает урожайность, оказывает влияние на климат отдельных регионов. Большинство человеческих болезней связаны прямо или косвенно с состоянием окружающей среды, которая либо становится причиной возникновения заболеваний, либо способствует их развитию.

Тяжелые металлы вызывают сердечно-сосудистые заболевания, тяжелые формы аллергии, и даже имеют канцерогенные свойства. Они влияют на генетический фон, так как накапливаются в организме с последующим эффектом действия, проявляющимся в наследственных заболеваниях, умственных расстройствах и т.д.

Токсичность тяжелых металлов выражается в связывании их с функциональными группами белковых и других жизненно важных соединений в человеческом организме. Последствием этого является отравление, то есть нарушение нормального функционирования клеток и тканей, которое иногда заканчивается летальным исходом.

Пыль, содержащая соединения с тяжелыми металлами, такими как кремний, мышьяк, ванадий, уменьшает вентиляцию и объем легких, повреждает слизистые оболочки глаз, верхних дыхательных путей, вызывает раздражение

полезна для других.

кожи, повышает смертность от рака легких и кишечника.

Под действием свинца нарушается синтез гемоглобина, возникают заболевания мочеполовых органов, нервной системы. В развитых городах содержание свинца в атмосфере превышает норму в 10 000 раз.

Так же очень опасны загрязнения вод ртутью, так как заражение морских организмов может стать причиной заболевания людей.

Кадмий присутствует во многих сельскохозяйственных удобрениях. Не осознавая этого, каждый день мы получаем этот вредный металл вместе с фруктами и овощами. Кадмий имеет свойство накапливаться и это, в дальнейшем может быть опасным.

Мышьяк так же является вредным для организма веществом. Чаще всего его можно найти в обычной водопроводной воде.

Интересным примером влияния тяжелых металлов может быть Ньютон. В 1692 году он заболел, болезнь была тяжелая и непонятная. Ученый потерял своё душевное равновесие, сон и аппетит, а иногда его даже подводила память. Биографы называли это время «черным годом» жизни великого ученого. Как стало известно позже, виновницей оказалась ртуть и её соли. Известно, что Ньютон обращался к химии и часто проводил опыты с ртутью, подолгу нагревая её, чтобы получить летучие вещества, и даже пробовал получившееся. Оказалось, у него было ртутное отравление, а анализ волос подтвердил, что концентрации высокотоксичных металлов в них сильно превышали нормы.

Тяжелые металлы повсюду — в нашей воде, пище, в бытовых чистящих средствах, и даже в воздухе, которым мы дышим. Некоторые опасны только в больших количествах, а некоторые и в маленьких, особенно если они попали внутрь организма. Симптомы отравления часто путают с другими заболеваниями, хотя каждый из нас имеют немалое количество токсичных элементов в своих клетках.

Одна из самых больших проблем, что токсичные металлы накапливаются и разрушают нас изнутри, а избавиться от них достаточно сложно. Мы предлагаем несколько полезных советов, которые помогут сохранить здоровье:

— противоядием от тяжёлых металлов и их солей является яичный белок.

— если металлическая ртуть рассыпалась, её необходимо засыпать порошком серы или залить раствором хлорида железа (III);

— потребляйте больше Омега-3 жирные кислоты, они отлично подходят для детоксикации тяжелых металлов из ваших клеток;

— консервные банки спаиваются припоем, содержащим определённое количество свинца, поэтому консервы следует перекладывать в стеклянную посуду после её открывания;

— выбирайте органическую или фермерскую продукцию. Убедитесь, что все ваши фрукты, овощи и травы выращивают без использования химических

Читать статью  Ионы металлов

пестицидов и удобрений;

— для приготовления и хранения пищи нужно использовать только специальную посуду, глазурь, которой покрыта декоративная посуда, содержит соли свинца и кадмия;

— используйте только натуральные моющие средства;

— вдоль дорог следует сажать только декоративные и лесные породы деревьев, а не пищевые, так как этилированный бензин, поглощается растениями, и употреблять их в пищу нельзя;

— полюбите свежий лук и чеснок. Лук, чеснок, лук-шалот содержат высокое содержание серы — мощный природный хелатообразователь, который связывает ионы тяжелых металлов (так же, как кинза и хлорелла) и выводит их через пищеварительный тракт;

— берегите детей. Некоторые детские игрушки содержат токсичные красители, в состав которых входит кадмий.

В результате общего загрязнения атмосферы, гидросферы и литосферы, за счет интенсивных и бесконтрольных выбросов цветной и черной металлургии, предприятий горнодобывающей, металлургической, химической промышленности, происходит интенсивное загрязнение почвы, воздуха, воды и морских организмов, вредными веществами. Они поступают в организм человека и способны накапливаться в костях, тканях, крови, отравляя организм и вызывая мутационные изменения, различные заболевания, а также могут изменять биологический режим работы организма.

В настоящее время люди не информированы о последствиях воздействия тяжелых металлов на человеческий организм, а ведь это воздействие чаще всего может стать губительным для него. Увеличение концентрации тяжелых металлов увеличивает число мутаций, передающихся по наследству, значительно ухудшает здоровье человека.

Загрязнение тяжелыми металлами может быть уменьшено в результате запрещения производства и применения ряда продуктов производства, отрицательно влияющих на человека, введением строгого контроля над отходами производства, а также за пищевыми продуктами, уменьшение техногенных выбросов в биосферу. Мы не должны экономить на очистных сооружениях, методах очистки от вредных элементов, содержащихся в почве и воде, ведь экономя на этом, мы экономим не только на своем здоровье, но и на здоровье нашего будущего поколения.

1. Ахметов Н.С. Общая и неорганическая химия. — М.: Высшая школа,1988.

2. Кирпатовский И.П. Охрана природы: Справочник для работников нефтеперерабатывающей и нефтехимической промышленности. М.: Химия, 1974. — 376 с.

3. Мудрый И.В. Тяжёлые металлы в окружающей среде и их влияние на организм / И.В. Мудрый, Т.К. Короленко // Врачебное дело. — 2002. — № 5/6. — С.

Читайте также:

  • Дешевый обезжириватель для металла
  • Сварка оцинкованного металла с черным электродом
  • Установка для резки металла
  • Металлический голос в audacity
  • Все для ковки металла оборудование

Роль тяжелых металлов в экосфере

Исследование основных экологических и химических аспектов проблемы распространения тяжелых металлов в окружающей среде. Формы содержания тяжелых металлов в поверхностных водах и их токсичность. Тяжелые металлы в почвах и растениях. Микробный ценоз почв.

Рубрика Экология и охрана природы
Вид реферат
Язык русский
Дата добавления 25.12.2010
Размер файла 33,2 K
  • посмотреть текст работы
  • скачать работу можно здесь
  • полная информация о работе
  • весь список подобных работ

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

кубанский государственный университет

Роль тяжелых металлов в экосфере

СОДЕРЖЕНИЕ

1. Тяжелые металлы в биосфере

2. Формы содержания тяжелых металлов в поверхностных водах

3. Тяжелые металлы как токсиканты в природных водах

4. Тяжелые металлы в почвах

5. Влияние тяжелых металлов на микробный ценоз почв

6. Тяжелые металлы в растениях

СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ

ВВЕДЕНИЕ

Среди загрязнителей биосферы, представляющих наибольший интерес для различных служб контроля ее качества, металлы (в первую очередь тяжелые, то есть имеющие атомный вес больше 40) относятся к числу важнейших. В значительной мере это связано с биологической активностью многих из них. На организм человека и животных физиологическое действие металлов различно и зависит от природы металла, типа соединения, в котором он существует в природной среде, а также его концентрации. Многие тяжелые металлы проявляют выраженные комплексообразующие свойства. Так, в водных средах ионы этих металлов гидратированы и способны образовывать различные гидроксокомплексы, состав которых зависит от кислотности раствора. Если в растворе присутствуют какие-либо анионы или молекулы органических соединений, то ионы этих металлов образуют разнообразные комплексы различного строения и устойчивости.

В ряду тяжелых металлов одни крайне необходимы для жизнеобеспечения человека и других живых организмов и относятся к так называемым биогенным элементам. Другие вызывают противоположный эффект и, попадая в живой организм, приводят к его отравлению или гибели. Эти металлы относят к классу ксенобиотиков, то есть чуждых живому. Специалистами по охране окружающей среды среди металлов-токсикантов выделена приоритетная группа. В нее входят кадмий, медь, мышьяк, никель, ртуть, свинец, цинк и хром как наиболее опасные для здоровья человека и животных. Из них ртуть, свинец и кадмий наиболее токсичны.

К возможным источникам загрязнения биосферы тяжелыми металлами относят предприятия черной и цветной металлургии (аэрозольные выбросы, загрязняющие атмосферу, промышленные стоки, загрязняющие поверхностные воды), машиностроения (гальванические ванны меднения, никелирования, хромирования, кадмирования), заводы по переработке аккумуляторных батарей, автомобильный транспорт.

Кроме антропогенных источников загрязнения среды обитания тяжелыми металлами существуют и другие, естественные, например вулканические извержения: кадмий обнаружили сравнительно недавно в продуктах извержения вулкана Этна на острове Сицилия в Средиземном море. Увеличение концентрации металлов-токсикантов в поверхностных водах некоторых озер может происходить в результате кислотных дождей, приводящих к растворению минералов и пород, омываемых этими озерами. Все эти источники загрязнения вызывают в биосфере или ее составляющих (воздухе, воде, почвах, живых организмах) увеличение содержания металлов-загрязнителей по сравнению с естественным, так называемым фоновым уровнем.

Хотя, как было упомянуто выше, попадание металла-токсиканта может происходить и путем аэрозольного переноса, в основном они проникают в живой организм через воду. Попав в организм, металлы-токсиканты чаще всего не подвергаются каким-либо существенным превращениям, как это происходит с органическими токсикантами, и, включившись в биохимический цикл, они крайне медленно покидают его.

Для контроля качества поверхностных вод созданы различные гидробиологические службы наблюдений. Они следят за состоянием загрязнения водных экосистем под влиянием антропогенного воздействия. Поскольку такая экосистема включает в себя как саму среду (воду), так и другие компоненты (донные отложения и живые организмы — гидробионты), сведения о распределении тяжелых металлов между отдельными компонентами экосистемы имеют весьма важное значение. Надежные данные в этом случае могут быть получены при использовании современных методов аналитической химии, позволяющих определить содержание тяжелых металлов на уровне фоновых концентраций.

Нужно отметить, что успехи в развитии методов анализа позволили решить такие глобальные проблемы, как обнаружение основных источников загрязнения биосферы, установление динамики загрязнения и трансформации загрязнителей, их перенос и миграцию. При этом тяжелые металлы были классифицированы как одни из важнейших объектов анализа. Поскольку их содержание в природных материалах может колебаться в широких пределах, то и методы их определения должны обеспечивать решение поставленной задачи. В результате усилий ученых-аналитиков многих стран были разработаны методы, позволяющие определять тяжелые металлы на уровне фемтограммов (10-15 г) или в присутствии в анализируемом объеме пробы одного (!) атома, например никеля в живой клетке.

К сложной и многогранной проблеме, которую представляют собой химические загрязнения окружающей среды тяжелыми металлами и которая охватывает различные дисциплины и уже превратилась в самостоятельную междисциплинарную область знаний, профессиональный интерес проявляют не только химики-аналитики, биологи и экологи (их деятельность традиционно связана с этой проблемой), но и медики. В потоке научной и научно-популярной информации, а также в средствах массовой информации все чаще появляются материалы о влиянии тяжелых металлов на состояние здоровья человека. Так, в США обратили внимание на проявление агрессивности у детей в связи с повышенным содержанием в их организме свинца. В других регионах планеты рост числа правонарушений и самоубийств также связывают с повышением содержания этих токсикантов в окружающей среде. Представляет интерес обсуждение некоторых химических и эколого-химических аспектов проблемы распространения тяжелых металлов в окружающей среде.

1. ТЯЖЕЛЫЕ МЕТАЛЛЫ В БИОСФЕРЕ

К тяжелым металлам относятся более 40 химических элементов периодической системы с атомной массой свыше 50 а. е. м. Иногда тяжелыми металлами называют элементы, которые имеют плотность более 7 — 8 тыс. кг/мі (кроме благородных и редких). Группа элементов, обозначаемых ТМ , активно участвует в биологический процессах, многие из них входит в состав ферментов. Набор тяжелых металлов во многом совпадает с перечнем микроэлементов. Большинство микроэлементов выполняет в живых организмах функции инициаторов и активаторов биохимических процессов.

Районы, в которых концентрация химических элементов в силу природных причин оказывается выше или ниже фонового уровня называют биохимическими провинциями. Формирование биохимических провинций обусловлено особенностями почвообразующих пород, почвообразовательного процесса, а так же присутствием рудных аномалий. При загрязнении биосферы происходит образование техногенных аномалий, в которых содержание элементов превышает в 10 раз и более фоновое.

К числу тяжелых металлов относят хром, марганец, железо, кобальт, никель, медь, цинк, галлий, германий, молибден, кадмий, олово, сурьму, теллур, вольфрам, ртуть, таллий, свинец, висмут. Главными природными источниками тяжелых металлов являются породы (магматические и осадочные) и породообразующие минералы. Многие минералы в виде высокодисперсных частиц включаются в качестве микропримеси в массу горных пород. Например минералы титана (брукит, ильменит). Породообразующие минералы содержат так же рассеянные элементы в качестве изоморфных примесей в структуре металлических решёток , замещая макроэлементы с близким размером радиуса. Например, К на Sr, Pb, B; Na — Cd, Mn, Cr, Bi; Mg — Ni, Co, Zn, Sb, Sn, Pb, Mn; Fe — Cd, Mn, Sr, Bi.

В последние десятилетия в процессы миграции ТМ в природной среде интенсивно включилась антропогенная деятельность человечества. Количества химических элементов, поступающие в окружающую среду в результате техногенеза, в ряде случаев значительно превосходят уровень их естественного поступления. Например, глобальное выделение Pb из природных источников в год составляет 12 тыс.т. и антропогенная эмиссия 332 тыс.т.

По приведенным ниже данным можно судить о размерах антропогенной деятельности человечества: вклад техногенного свинца составляет 94-97% (остальное — природные источники), кадмия — 84-89%, меди — 56-87%, никеля — 66-75%, ртути — 58% и т.д. При этом 26-44% мирового антропогенного потока этих элементов приходится на Европу, а на долю европейской территории бывшего СССР — 28-42% от всех выбросов в Европе (Вронский, 1996). Ниже приводим краткое описание свойств металлов, касающихся особенностей их поведения в почвах.

2. ФОРМЫ СУЩЕСТВОВАНИЯ ТЯЖЕЛЫХ МЕТАЛЛОВ В ПОВЕРХНОСТНЫХ ВОДАХ

Важнейшим показателем качества среды обитания является степень чистоты поверхностных вод. Металл-токсикант, попав в водоем или реку, распределяется между компонентами этой водной экосистемы. Однако не всякое количество металла вызывает расстройство данной системы. При оценке способности экосистемы сопротивляться внешнему токсическому воздействию принято говорить о буферной емкости экосистемы. Так, под буферной емкостью пресноводных экосистем по отношению к тяжелым металлам понимают такое количество металла-токсиканта, поступление которого существенно не нарушает естественного характера функционирования всей изучаемой экосистемы. При этом сам металл-токсикант распределяется на следующие составляющие: 1) металл в растворенной форме; 2) сорбированный и аккумулированный фитопланктоном, то есть растительными микроорганизмами; 3) удерживаемый донными отложениями в результате седиментации взвешенных органических и минеральных частиц из водной среды; 4) адсорбированный на поверхности донных отложений непосредственно из водной среды в растворимой форме; 5) находящийся в адсорбированной форме на частицах взвеси.

На формы нахождения металлов в водах оказывают влияние гидробионты (например, моллюски). Так, при изучении поведения меди в поверхностных водах наблюдают сезонные колебания ее концентрации: в зимний период они максимальны, а летом вследствие активного роста биомассы снижаются. При осаждении взвешенных органических частиц, которые обладают способностью адсорбировать ионы меди, последние переходят в донные отложения, что и приводит к наблюдаемому эффекту. Следует также отметить, что интенсивность этого процесса зависит от скорости седиментации взвесей, то есть косвенно от таких факторов, как размеры и заряд адсорбирующих ионы меди частиц.

Кроме аккумулирования металлов за счет адсорбции и последующей седиментации в поверхностных водах происходят другие процессы, отражающие устойчивость экосистем к токсическому воздействию такого рода загрязнителей. Наиболее важный из них состоит в связывании ионов металлов в водной среде растворенными органическими веществами. При этом общая концентрация токсиканта в воде не меняется. Тем не менее принято считать, что наибольшей токсичностью обладают гидратированные ионы металлов, а связанные в комплексы опасны в меньшей мере либо даже почти безвредны. Специальные исследования показали, что между общей концентрацией металла-токсиканта в природных поверхностных водах и их токсичностью нет однозначной зависимости.

В природных поверхностных водах содержится множество органических веществ, 80% которых составляют высокоокисленные полимеры типа гумусовых веществ, проникающих в воду из почв. Остальная часть органических веществ, растворимых в воде, представляет собой продукты жизнедеятельности организмов (полипептиды, полисахариды, жирные и аминокислоты) или же подобные по химическим свойствам примеси антропогенного происхождения. Все они, конечно, претерпевают различные превращения в водной среде. Но все они в то же время являются своего рода комплексообразующими реагентами, связывающими ионы металлов в комплексы и уменьшающими тем самым токсичность вод.

Различные поверхностные воды по-разному связывают ионы металлов-токсикантов, проявляя при этом различную буферную емкость. Воды южных озер, рек, водоемов, имеющих большой набор природных компонентов (гумусовые вещества, гуминовые кислоты и фульвокислоты) и их высокую концентрацию, способны к более эффективной природной детоксикации по сравнению с водами водоемов Севера и умеренной полосы. Таким образом, при прочих равных условиях токсичность вод, в которых оказались загрязнители, зависит и от климатических условий природной зоны. Следует отметить, что буферная емкость поверхностных вод по отношению к металлам-токсикантам определяется не только наличием растворенного органического вещества и взвесей, но и аккумулирующей способностью гидробионтов, а также кинетикой поглощения ионов металлов всеми компонентами экосистемы, включая комплексообразование с растворенными органическими веществами. Все это говорит о сложности процессов, протекающих в поверхностных водах при попадании в них металлов-загрязнителей.

Интересно отметить, что гуминовые кислоты, эти специфические природные высокомолекулярные соединения, образующиеся при превращении растительных остатков в почвах под влиянием микроорганизмов, способны, видимо, в наибольшей степени связывать ионы тяжелых металлов в прочные комплексы. Так, константы устойчивости соответствующих гуматов (комплексов ионов тяжелых металлов с гуминовыми кислотами) имеют значения в пределах 105-1012 в зависимости от природы металла. Устойчивость гуматов зависит от кислотности водной среды.

Химико-аналитический аспект проблемы определения форм существования металлов в природных водах хотя и был сформулирован около 20 лет назад, однако лишь с появлением новейших методов анализа эта задача стала доступной для решения. Раньше определяли лишь валовое содержание тяжелого металла в воде и устанавливали распределение между взвешенной и растворенной формами. О качестве вод, загрязненных металлами, судили на основе сопоставления данных по их валовому содержанию с величинами ПДК. Сейчас такая оценка считается неполной и необоснованной, так как биологическое действие металла определяется его состоянием в водах, а это, как правило, комплексы с различными компонентами. Как уже отмечалось выше, в отдельных случаях, например при комплексообразовании с органическими соединениями естественного происхождения, эти комплексы не только малотоксичны, но нередко оказывают стимулирующее действие на развитие гидробионтов, поскольку при этом они становятся биологически доступны организмам.

При разработке существующих ПДК процессы комплексообразования не учитывали и оценку влияния неорганических солей тяжелых металлов на живые организмы проводили в чистых водных растворах при отсутствии растворенных органических веществ естественного происхождения. Строго говоря, провести такую оценку сложно, а порой и невозможно.

Итак, токсичность вод при загрязнении их тяжелыми металлами в основном определяется концентрацией либо акваионов металлов, либо простейших комплексов с неорганическими ионами. Присутствие других комплексообразующих веществ, и прежде всего органических, понижает токсичность. Отмеченное выше явление накопления токсикантов в донных отложениях может явиться причиной вторичной токсичности вод. Действительно, даже если источник загрязнения устранен и, как говорят, «вода пошла нормальная», в дальнейшем становится возможна обратная миграция металла из донных отложений в воды. Прогнозирование состояния водных систем должно опираться поэтому на данные анализа всех их составляющих, проводимого через определенные промежутки времени.

Любопытным оказался случай обнаружения залежей киновари (сульфида ртути) в одном из районов Карпат. Для геологов эта находка стала неожиданностью. Оказалось, что в средние века в селениях, расположенных в горах выше по течению реки, систематически применяли препарат ртути для лечения некоторых заболеваний. Шли годы, река собирала этот металл, переносила его вниз по течению и аккумулировала в одной из природных ловушек в виде донных отложений. Дальнейшая его трансформация дала в итоге киноварь.

3. ТЯЖЕЛЫЕ МЕТАЛЛЫ КАК ТОКСИКАНТЫ В ПРИРОДНЫХ ВОДАХ

Из перечня приоритетных металлов-загрязнителей рассмотрим ртуть, свинец и кадмий как представляющие наибольшую опасность для здоровья человека и животных.

Ртуть. В окружающей среде соединения ртути с различной степенью окисления металла, то есть Hg(0), Hg(I), Hg(II), могут реагировать между собой. Наибольшую опасность представляют собой органические, прежде всего алкильные, соединения. Самый емкий аккумулятор соединений ртути (до 97%) — поверхностные воды океанов. Около половины всей ртути в природную среду попадает по техногенным причинам.

Кислотность среды и ее окислительный потенциал влияют на нахождение в водной среде той или иной формы ртути. Так, в хорошо аэрированных водоемах преобладают соединения Hg(II). Ионы ртути легко связываются в прочные комплексы с различными органическими веществами, находящимися в водах и выступающими в качестве лигандов. Особенно прочные комплексы образуются с серосодержащими соединениями. Ртуть легко адсорбируется на взвешенных частицах вод. При этом так называемый фактор концентрирования достигает порой 105, то есть на этих частицах сконцентрировано ртути в сто тысяч раз больше, чем находится в равновесии в водной среде. Отсюда следует, что судьба металла будет определяться сорбцией взвешенными частицами с последующей седиментацией, то есть по существу будет происходить удаление ртути из водной системы, как это уже было описано на примере образования залежей киновари в регионе Карпат. Следует отметить, что десорбция ртути из донных отложений происходит медленно, поэтому повторное загрязнение поверхностных вод после того, как источник загрязнения установлен и ликвидирован, также имеет заторможенную кинетику.

В водных средах ртуть образует металлорганические соединения типа R-Hg-X и R-Hg-R, где R — метил- или этил-радикал. Из антропогенных источников в водные системы ртуть попадает в виде преимущественно металлической ртути, ионов Hg(II) и ацетата фенилртути. Преобладающей формой ртути, обнаруживаемой в рыбе, является метилртуть, образующаяся биологическим путем с участием ферментов микроорганизмов. В незагрязненных поверхностных водах содержание ртути колеблется в пределах 0,2-0,1 мкг/л, в морских — в три раза меньше. Водные растения поглощают ртуть. Органические соединения R-Hg-R’ в пресноводном планктоне содержатся в большей концентрации, чем в морском. Из организма органические соединения ртути выводятся медленнее, чем неорганические. Существующий стандарт на предельное содержание этого токсиканта (0,5 мкг/кг) используют при контроле качества пищевых продуктов. При этом предполагают, что ртуть присутствует в виде метилированных соединений. При попадании в организм человека последних может проявиться болезнь Минимата.

Свинец. Половина от общего количества этого токсиканта поступает в окружающую среду в результате сжигания этилированного бензина. В водных системах свинец в основном связан адсорбционно со взвешенными частицами или находится в виде растворимых комплексов с гуминовыми кислотами. При биометилировании, как и в случае с ртутью, свинец в итоге образует тетраметилсвинец. В незагрязненных поверхностных водах суши содержание свинца обычно не превышает 3 мкг/л. В реках промышленных регионов отмечается более высокое содержание свинца. Снег способен в значительной степени аккумулировать этот токсикант: в окрестностях крупных городов его содержание может достигать почти 1 млн мкг/л, а на некотором удалении от них ~1-100 мкг/л.

Водные растения хорошо аккумулируют свинец, но по-разному. Иногда фитопланктон удерживает его с коэффициентом концентрирования до 105, как и ртуть. В рыбе свинец накапливается незначительно, поэтому для человека в этом звене трофической цепи он относительно мало опасен. Метилированные соединения в рыбе в обычных условиях содержания водоемов обнаруживаются относительно редко. В регионах с промышленными выбросами накопление тетраметилсвинца в тканях рыб протекает эффективно и быстро — острое и хроническое воздействие свинца наступает при уровне загрязненности 0,1-0,5 мкг/л. В организме человека свинец может накапливаться в скелете, замещая кальций.

Кадмий. По химическим свойствам этот металл подобен цинку. Он может замещать последний в активных центрах металлсодержащих ферментов, приводя к резкому нарушению в функционировании ферментативных процессов.

В рудных месторождениях кадмий, как правило, присутствует вместе с цинком. В водных системах кадмий связывается с растворенными органическими веществами, особенно если в их структуре присутствует сульфгидрильные группы SH. Кадмий образует также комплексы с аминокислотами, полисахаридами, гуминовыми кислотами. Считают, однако, что само по себе присутствие высоких концентраций этих лигандов, способных связывать кадмий, еще недостаточно для понижения концентрации свободных акваионов кадмия до уровня, безопасного для живых организмов. Адсорбция ионов кадмия донными осадками сильно зависит от кислотности среды. В нейтральных водных средах свободный ион кадмия практически нацело сорбируется частицами донных отложений.

Источников поступления кадмия в окружающую среду еще несколько лет назад было достаточно много. После того как была доказана его высокая токсичность, их число резко сократилось (по крайней мере в промышленно развитых странах).

Сейчас основной источник загрязнения окружающей среды этим токсикантом — места захоронения никель-кадмиевых аккумуляторов. Как уже отмечалось, кадмий обнаружен в продуктах извержения вулкана Этна. В дождевой воде концентрация кадмия может превышать 50 мкг/л.

В пресноводных водоемах и реках содержание кадмия колеблется в пределах 20-400 нг/л.

Наименьшее его содержание в океане зарегистрировано в акватории Тихого океана, к востоку от Японских островов (~ 0,8-9,6 нг/л на глубине 8-5500 м). Этот металл накапливается водными растениями и в тканях внутренних органов рыб (но не в скелетной мускулатуре).

Кадмий обычно проявляет меньшую токсичность по отношению к растениям в сравнении с метилртутью и сопоставим по токсичности со свинцом.

При содержании кадмия ~ 0,2-1 мг/л замедляются фотосинтез и рост растений. Интересен следующий зафиксированный эффект: токсичность кадмия заметно снижается в присутствии некоторых количеств цинка, что еще раз подтверждает предположение о возможности конкуренции ионов этих металлов в организме за участие в ферментативном процессе.

Порог острой токсичности кадмия варьирует в пределах от 0,09 до 105 мкг/л для пресноводных рыб. Увеличение жесткости воды повышает степень защиты организма от отравления кадмием. Известны случаи сильного отравления людей кадмием, попавшим в организм по трофическим цепям (болезнь итай-итай). Из организма кадмий выводится в течение длительного периода (около 30 лет).

4. ТЯЖЕЛЫЕ МЕТАЛЛЫ В ПОЧВАХ

Содержание ТМ в почвах зависит, как установлено многими исследователями, от состава исходных горных пород, значительное разнообразие которых связано со сложной геологической историей развития территорий. Химический состав почвообразующих пород, представленный продуктами выветривания горных пород, предопределен химическим составом исходных горных пород и зависит от условий гипергенного преобразования.

Первый этап трансформации оксидов тяжелых металлов в почвах является взаимодействие их с почвенным раствором и его компонентами. Даже в такой простой системе как вода находящаяся в равновесии с СО2, атмосферного воздуха, оксиды ТМ подвергаются изменению и существенно различны по устойчивости.

Процесс трансформации поступивших в почву в процессе техногенеза ТМ включает следующие стадии:

1) преобразование оксидов тяжелых металлов в гидроксиды (карбонаты, гидрокарбонаты);

2) растворение гидроксидов тяжелых металлов и адсорбция соответствующих катионов ТМ твердыми фазами почв;

3) образование фосфатов тяжелых металлов и их соединений с органическими веществами почвы.

Тяжелые металлы, поступающие на поверхность почвы, накапливаются в почвенной толще, особенно в верхнем горизонте и медленно удаляются при выщелачивании, потреблением растениями и эрозии. Первый период полуудаления ТМ значительно варьируется для разных элементов: Zn — 70 — 510 лет, Cd — 13 — 110 лет, Cu — 310 — 1500 лет, Pb — 740 — 5900 лет.

Свинец (Pb). Атомная масса 207,2. Приоритетный элемент-токсикант. Все растворимые соединения свинца ядовиты. В естественных условиях он существует в основном в форме PbS. Кларк Pb в земной коре 16,0 мг/кг. По сравнению с другими ТМ он наименее подвижен, причем степень подвижности элемента сильно снижается при известковании почв. Подвижный Pb присутствует в виде комплексов с органическим веществом. При высоких значениях рН свинец закрепляется в почве химически в виде гидроксида, фосфата, карбоната и Pb-органических комплексов.

Естественное содержание свинца в почвах наследуется от материнских пород и тесно связано с их минералогическим и химическим составом. Средняя концентрация этого элемента в почвах мира достигает по разным оценка от 10 до 35 мг/кг. ПДК свинца для почв в России соответствует 30 мг/кг, в Германии — 100 мг/кг.

Высокая концентрация свинца в почвах может быть связана как с природными геохимическими аномалиями, так и с антропогенным воздействием. При техногенном загрязнении наибольшая концентрация элемента, как правило, обнаруживается в верхнем слое почвы. В некоторых промышленных районах она достигает 1000 мг/кг, а в поверхностном слое почв вокруг предприятий цветной металлургии в Западной Европе — 545 мг/кг.

Содержание свинца в почвах на территории России существенно варьирует в зависимости от типа почвы, близости промышленных предприятий и естественных геохимических аномалий. В почвах селитебных зон, особенно связанных с использованием и производством свинецсодержащих продуктов, содержание данного элемента часто в десятки и более раз превышает ПДК. По предварительным оценкам до 28% территории страны имеет содержание Рb в почве, в среднем, ниже фоновой, а 11% — могут быть отнесены к зоне риска. В то же время, в Российской Федерации проблема загрязнения почв свинцом — преимущественно проблема селитебных территорий .

Кадмий (Cd). Атомная масса 112,4. Кадмий по химическим свойствам близок к цинку, но отличается от него большей подвижностью в кислых средах и лучшей доступностью для растений. В почвенном растворе металл присутствует в виде Cd2+ и образовывает комплексные ионы и органические хелаты. Главный фактор, определяющий содержание элемента в почвах при отсутствии антропогенного влияния, — материнские породы. Кларк кадмия в литосфере 0,13 мг/кг. В почвообразующих породах содержание металла в среднем составляет: в глинах и глинистых сланцах — 0,15 мг/кг, лессах и лессовидных суглинках — 0,08, песках и супесях — 0,03 мг/кг. В четвертичных отложениях Западной Сибири концентрация кадмия изменяется в пределах 0,01-0,08 мг/кг.

Подвижность кадмия в почве зависит от среды и окислительно-восстановительного потенциала.

Среднее содержание кадмия в почвах мира равно 0,5 мг/кг. Концентрация его в почвенном покрове европейской части России составляет 0,14 мг/кг — в дерново-подзолистой почве, 0,24 мг/кг — в черноземе, 0,07 мг/кг — в основных типах почв Западной Сибири. Ориентировочно-допустимое содержание (ОДК) кадмия для песчаных и супесчаных почв в России составляет 0,5 мг/кг, в Германии ПДК кадмия — 3 мг/кг.

Загрязнение почвенного покрова кадмием считается одним из наиболее опасных экологических явлений, так как он накапливается в растениях выше нормы даже при слабом загрязнении почвы. Наибольшие концентрации кадмия в верхнем слое почв отмечаются в горнорудных районах — до 469 мг/кг, вокруг цинкоплавилен они достигают 1700 мг/кг.

Цинк (Zn). Атомная масса 65,4. Его кларк в земной коре 83 мг/кг. Цинк концентрируется в глинистых отложениях и сланцах в количествах от 80 до 120 мг/кг, в делювиальных, лессовидных и карбонатных суглинистых отложениях Урала, в суглинках Западной Сибири — от 60 до 80 мг/кг.

Важными факторами, влияющими на подвижность Zn в почвах, являются содержание глинистых минералов и величина рН. При повышении рН элемент переходит в органические комплексы и связывается почвой. Ионы цинка также теряют подвижность, попадая в межпакетные пространства кристаллической решетки монтмориллонита. С органическим веществом Zn образует устойчивые формы, поэтому в большинстве случаев он накапливается в горизонтах почв с высоким содержанием гумуса и в торфе.

Среднее содержание цинка в почвах мира составляет 90 мг/кг. Концентрация его в почвенном покрове европейской территории равна 32-60 мг/кг, в почвах Западной Сибири — 60-81 мг/кг.

Причинами повышенного содержания цинка в почвах могут быть как естественные геохимические аномалии, так и техногенное загрязнение. Основными антропогенными источниками его поступления в первую очередь являются предприятия цветной металлургии. Загрязнение почв этим металлом привело в некоторых областях к крайне высокой его аккумуляции в верхнем слое почв — до 66400 мг/кг. В огородных почвах накапливается до 250 и более мг/кг цинка. ОДК цинка для песчаных и супесчаных почв равна 55 мг/кг, германскими учеными рекомендуется ПДК, равная 100 мг/кг.

Медь (Cu). Атомная масса 63,5. Кларк в земной коре 47 мг/кг (Виноградов, 1962). В химическом отношении медь — малоактивный металл. Основополагающим фактором, влияющим на величину содержания Cu, является концентрация ее в почвообразующих породах. Из изверженных пород наибольшее количество элемента накапливают основные породы — базальты (100-140 мг/кг) и андезиты (20-30 мг/кг). Покровные и лессовидные суглинки (20-40 мг/кг) менее богаты медью. Наименьшее же ее содержание отмечается в песчаниках, известняках и гранитах (5-15 мг/кг). Концентрация метала в глинах европейской части территории бывшего СССР достигает 25 мг/кг, в лессовидных суглинках — 18 мг/кг. Супесчаные и песчаные почвообразующие породы Горного Алтая накапливают в среднем 31 мг/кг меди, юга Западной Сибири — 19 мг/кг.

В почвах медь является слабомиграционным элементом, хотя содержание подвижной формы бывает достаточно высоким. Количество подвижной меди зависит от многих факторов: химического и минералогического состава материнской породы, рН почвенного раствора, содержания органического вещества и др. Наибольшее количество меди в почве связано с оксидами железа, марганца, гидроксидами железа и алюминия и, особенно, с монтмориллонитом вермикулитом. Гуминовые и фульвокислоты способны образовывать устойчивые комплексы с медью. При рН 7-8 растворимость меди наименьшая.

Среднее содержание меди в почвах мира 30 мг/кг. Вблизи индустриальных источников загрязнения в некоторых случаях может наблюдаться загрязнение почвы медью до 3500 мг/кг. Среднее содержание металла в почвах центральных и южных областей бывшего СССР составляет 4,5-10,0 мг/кг, юга Западной Сибири — 30,6 мг/кг, Сибири и Дальнего Востока — 27,8 мг/кг. ПДК меди в России — 55 мг/кг, ОДК для песчаных и супесчаных почв — 33 мг/кг, в ФРГ — 100 мг/кг.

Никель (Ni). Атомная масса 58,7. В континентальных отложениях он присутствует, главным образом, в виде сульфидов и арсенитов, ассоциируется также с карбонатами, фосфатами и силикатами. Кларк элемента в земной коре равен 58 мг/кг. Наибольшее количество металла накапливают ультраосновные (1400-2000 мг/кг) и основные (200-1000 мг/кг) породы, а осадочные и кислые содержат его в гораздо меньших концентрациях — 5-90 и 5-15 мг/кг, соответственно. Большое значение в накоплении никеля почвообразующими породами играет их гранулометрический состав. На примере почвообразующих пород Западной Сибири видно, что в более легких породах его содержание наименьшее, в тяжелых — наибольшее: в песках — 17, супесях и легких суглинки -22, средние суглинки — 36, тяжелые суглинки и глины -49.

Содержание никеля в почвах в значительной степени зависит от обеспеченности этим элементом почвообразующих пород. Наибольшие концентрации никеля, как правило, наблюдаются в глинистых и суглинистых почвах, в почвах, сформированных на основных и вулканических породах и богатых органическим веществом. Распределение Ni в почвенном профиле определяется содержанием органического вещества, аморфных оксидов и количеством глинистой фракции.

Содержание Ni в почвах мира колеблется в широких пределах — от 1 до 100 мг/кг, составляя в среднем 50 мг/кг. Концентрация никеля в почвах европейской части России составляет — 51-54 мг/кг, Западной Сибири — 37-41 мг/кг.

Уровень концентрации никеля в верхнем слое почв зависит также от степени их техногенного загрязнения. В районах с развитой металлообрабатывающей промышленностью в почвах встречается очень высокое накопление никеля: в Канаде его валовое содержание достигает 206-26000 мг/кг, а в Великобритании содержание подвижных форм доходит до 506-600 мг/кг. В почвах Великобритании, Голландии, ФРГ, обработанных осадками сточных вод никель накапливается до 84-101 мг/кг. В России (по данным обследования 40-60 % почв сельскохозяйственных угодий) этим элементом загрязнены 2,8 % почвенного покрова. Доля загрязненных Ni почв в ряду других ТМ (Pb, Cd, Zn, Cr, Co, As и др.), является фактически самой значительной и уступает только землям загрязненным медью (3,8%). По данным мониторинга земель Государственной станции агрохимической службы «Бурятская» за 1993-1997 гг. на территории Республики Бурятия зарегистрировано превышение ПДК никеля на 1,4 % земель от обследованной территории сельхозугодий, среди которых выделяются почвы Закаменского (загрязнены 20% земель — 46 тыс.га) и Хоринского районов (загрязнены 11% земель — 8 тыс.га).

Содержание никеля в почвах России ограничивается следующими нормативами: ПДК никеля в почвах — 85 мг/кг; ОДК для песчаных и супесчаных почв — 20; ОДК обменной формы — 4,0 мг/кг. В Германии безопасным содержанием валового никеля в почвах считается 80-200 мг/кг.

Хром (Cr). Атомная масса 52. В природных соединениях хром обладает валентностью +3 и +6. Большая часть Cr3+ присутствует в хромите FeCr2O4 или других минералах шпинелевого ряда, где он замещает Fe и Al, к которым очень близок по своим геохимическим свойствам и ионному радиусу.

Кларк хрома в земной коре — 83 мг/кг. Наибольшие его концентрации среди магматических горных пород характерны для ультраосновных и основных (1600-3400 и 170-200 мг/кг соответственно), меньшие — для средних пород (15-50 мг/кг) и наименьшие — для кислых (4-25 мг/кг). Среди осадочных пород максимальное содержание элемента обнаружено в глинистых осадках и сланцах (60-120 мг/кг), минимальное — в песчаниках и известняках (5-40 мг/кг). Содержание металла в почвообразующих породах разных регионов весьма разнообразно. В европейской части бывшего СССР его содержание в таких наиболее распространенных почвообразующих породах, как лессы, лессовидные карбонатные и покровные суглинки, составляет в среднем 75-95 мг/кг. Почвообразующие породы Западной Сибири содержат в среднем 58 мг/кг Cr, причем его количество тесно связано с гранулометрическим составом пород: песчаные и супесчаные породы — 16 мг/кг, а среднесуглинистые и глинистые — около 60 мг/кг.

В почвах большая часть хрома присутствует в виде Cr3+. В кислой среде ион Cr3+ инертен, при рН 5,5 почти полностью выпадает в осадок. Ион Cr6+ крайне не стабилен и легко мобилизуется как в кислых, так и щелочных почвах. Адсорбция хрома глинами зависит от рН среды: при увеличении рН адсорбция Cr6+ уменьшается, а Cr3+ увеличивается. Органическое вещество почвы стимулирует восстановление Cr6+ до Cr3+.

Природное содержание хрома в почвах зависит главным образом от его концентрации в почвообразующих породах, а распределение по почвенному профилю — от особенностей почвообразования, в частности от гранулометрического состава генетических горизонтов. Среднее содержание хрома в почвах — 70 мг/кг. Наибольшее содержание элемента отмечается в почвах, сформированных на богатых этим металлом основных и вулканических породах. Среднее содержание Cr в почвах США составляет 54 мг/кг, Китая — 150 мг/кг, Украины — 400 мг/кг. В России его высокие концентрации в почвах в естественных условиях обусловлены обогащенностью почвообразующих пород. Курские черноземы содержат 83 мг/кг хрома, дерново-подзолистые почвы Московской области — 100 мг/кг. В почвах Урала, сформированных на серпентинитах, металла содержится до 10000 мг/кг, Западной Сибири — 86 — 115 мг/кг.

Вклад антропогенных источников в поступление хрома весьма значителен. Металлический хром в основном используется для хромирования в качестве компонента легированных сталей. Загрязнение почв Cr отмечено за счет выбросов цементных заводов, отвалов железохромовых шлаков, нефтеперегонных заводов, предприятий черной и цветной металлургии, использования в сельском хозяйстве осадков промышленных сточных вод, особенно кожевенных предприятий, и минеральных удобрений. Наивысшие концентрации хрома в техногенно загрязненных почвах достигают 400 и более мг/кг, что особенно характерно крупным городам. В Бурятии по данным мониторинга земель, проведенным Государственной станцией агрохимической службы «Бурятская» за 1993-1997 гг., хромом загрязнены 22 тыс. га. Превышения ПДК в 1,6-1,8 раз отмечены в Джидинском (6,2 тыс. га), Закаменском (17,0 тыс. га) и Тункинском (14,0 тыс. га) районах. ПДК хрома в почвах в России еще не разработаны, а в Германии для почв сельскохозяйственных угодий она составляет 200-500, приусадебных участков — 100 мг/кг.

5. ВЛИЯНИЕ ТЯЖЕЛЫХ МЕТАЛЛОВ НА МИКРОБНЫЙ ЦЕНОЗ ПОЧВ

Одним из наиболее эффективно диагностирующих индикаторов загрязнения почв является ее биологическое состояние, которое можно оценить по жизнеспособности населяющих ее почвенных микроорганизмов.

Следует также учитывать, что микроорганизмы играют большую роль и в миграции ТМ в почве. В процессе жизнедеятельности они выступают в роли продуцентов, потребителей и транспортирующих агентов в почвенной экосистеме. Многие почвенные грибы проявляют способность к иммобилизации ТМ, закрепляя их в мицелии и временно, исключая из круговорота. Кроме того, грибы, выделяя органические кислоты, нейтрализуют действие этих элементов, образуя с ними компоненты, менее токсичные и доступные для растений, чем свободные ионы.

Под влиянием повышенных концентраций ТМ наблюдается резкое снижение активности ферментов: амилазы, дегидрогеназы, уреазы, инвертазы, каталазы, а также численности отдельных агрономически ценных групп микроорганизмов. ТМ ингибируют процессы минерализации и синтеза различных веществ в почвах, подавляют дыхание почвенных микроорганизмов, вызывают микробостатический эффект, могут выступать как мутагенный фактор. При избыточном содержании ТМ в почве снижается активность метаболических процессов, происходят морфологические трансформации в строении репродуктивных органов и другие изменения почвенной биоты. ТМ в значительной степени могут подавлять биохимическую активность и вызывать изменения общей численности почвенных микроорганизмов.

Загрязнение почв ТМ вызывает определенные изменения в видовом составе комплекса почвенных микроорганизмов. В качестве общей закономерности отмечается значительное сокращение видового богатства и разнообразия комплекса почвенных микромицетов при загрязнении. В микробном сообществе загрязненной почвы появляются необычные для нормальных условий, устойчивые к ТМ виды микромицетов. Толерантность микроорганизмов к загрязнению почвы зависит от их принадлежности к различным систематическим группам. Очень чувствительны к высоким концентрациям ТМ виды рода Bacillus, нитрифицирующие микроорганизмы, несколько более устойчивы — псевдомонады, стрептомицеты и многие виды целлюлозоразрушающих микроорганизмов, наиболее же устойчивы — грибы и актиномицеты.

При низких концентрациях ТМ наблюдается некоторая стимуляция развития микробного сообщества, затем по мере возрастания концентраций происходит частичное ингибирование и, наконец, полное его подавление. Достоверные изменения видового состава фиксируются при концентрациях ТМ в 50-300 раз выше фоновых.

Степень угнетения жизнедеятельности микробоценоза зависит также от физиолого-биохимических свойств конкретных металлов, загрязняющих почвы. Свинец отрицательно влияет на биотическую деятельность в почве, ингибируя активность ферментов уменьшением интенсивности выделения двуокиси углерода и численности микроорганизмов, вызывает нарушения метаболизма микроорганизмов, особенно процессов дыхания и клеточного деления. Ионы кадмия в концентрации 12 мг/кг нарушают фиксацию атмосферного азота, а также процессы аммонификации, нитрификации и денитрификации. Наиболее подвержены воздействию кадмия грибы, причем некоторые виды после попадания металла в почву полностью исчезают. Избыток цинка в почвах затрудняет ферментацию разложения целлюлозы, дыхание микроорганизмов, действие уреазы и т. д., вследствие чего нарушаются процессы преобразования органического вещества в почвах. Кроме того, токсичное влияние ТМ зависит от набора металлов и их взаимного воздействия (антагонистического, синергичного или суммарного) на микробиоту.

Таким образом, под влиянием загрязнения почв ТМ происходят изменения в комплексе почвенных микроорганизмов. Это выражается в снижении видового богатства и разнообразия и увеличения доли толерантных к загрязнению микроорганизмов.

От активности почвенных процессов и жизнедеятельности населяющих ее микроорганизмов зависит интенсивность самоочищения почвы от загрязнителей.

Уровень загрязнения почв ТМ влияет на показатели биохимической активности почв, видовую структуру и общую численность микробоценоза. В почвах, где содержание тяжелых металлов превышает фоновое в 2-5 и более раз, наиболее заметно изменяются отдельные показатели ферментативной активности, несколько возрастает суммарная биомасса амилолитического микробного сообщества, изменяются и другие микробиологические показатели. При дальнейшем увеличении содержания ТМ до одного порядка обнаруживается достоверное снижение отдельных показателей биохимической активности почвенных микроорганизмов. Происходит перераспределение доминирования в почве амилолитического микробного сообщества. В почве, содержащей ТМ в концентрациях на один-два порядка превышающих фоновые, достоверны изменения уже целой группы микробиологических показателей. Сокращается число видов почвенных микромицетов, и наиболее устойчивые виды начинают абсолютно доминировать. При превышении содержания ТМ в почве над фоном на три порядка наблюдаются резкие изменения практически всех микробиологических показателей. При указанных концентрациях ТМ в почвах происходит ингибирование и гибель нормальной для незагрязненной почвы микробиоты. В то же время активно развивается и даже абсолютно доминирует очень ограниченное число микроорганизмов, резистентных к ТМ, преимущественно микромицетов. Наконец, при концентрациях ТМ в почвах, превышающих фоновые на четыре и более порядков, обнаруживается катастрофическое снижение микробиологической активности почв, граничащее с полной гибелью микроорганизмов.

6. ТЯЖЕЛЫЕ МЕТАЛЛЫ В РАСТЕНИЯХ

Растительная пища является основным источником поступления ТМ в организм человека и животных. По разным данным, с ней поступает от 40 до 80 % ТМ, и только 20-40 % — с воздухом и водой. Поэтому от уровня накопления металлов в растениях, используемых в пищу, в значительной степени зависит здоровье населения.

Химический состав растений, как известно, отражает элементный состав почв. Поэтому избыточное накопление ТМ растениями обусловлено, прежде всего, их высокими концентрациями в почвах. В своей жизнедеятельности растения контактируют только с доступными формами ТМ, количество которых, в свою очередь, тесно связано с буферностью почв. Однако, способность почв связывать и инактивировать ТМ имеет свои пределы, и когда они уже не справляются с поступающим потоком металлов, важное значение приобретает наличие у самих растений физиолого-биохимических механизмов, препятствующих их поступлению.

Механизмы устойчивости растений к избытку ТМ могут проявляться по разным направлениям: одни виды способны накапливать высокие концентрации ТМ, но проявлять к ним толерантность; другие стремятся снизить их поступление путем максимального использования своих барьерных функций. Для большинства растений первым барьерным уровнем являются корни, где задерживается наибольшее количество ТМ, следующий — стебли и листья, и, наконец, последний — органы и части растений, отвечающие за воспроизводительные функции (чаще всего семена и плоды, а также корне- и клубнеплоды и др.)

Однако не всегда эти закономерности повторяются, что, вероятно, связано с условиями произрастания растений и их генетической спецификой. Отмечаются случаи, когда разные сорта одной культуры, произрастающие на одинаково загрязненной почве содержали различное количество ТМ. Данный факт, по-видимому, обусловлен присущим всем живым организмам внутривидовым полиморфизмом, способным проявить себя и при техногенном загрязнении природной среды. Это свойство у растений может стать основой генетико-селекционных исследований с целью создания сортов с повышенными защитными возможностями по отношению к избыточным концентрациям ТМ.

Несмотря на существенную изменчивость различных растений к накоплению ТМ, биоаккумуляция элементов имеет определенную тенденцию, позволяющую упорядочить их в несколько групп: 1) Cd, Cs, Rb — элементы интенсивного поглощения; 2) Zn, Mo, Cu, Pb, As, Co — средней степени поглощения; 3) Mn, Ni, Cr — слабого поглощения и 4) Se, Fe, Ba, Te — элементы, труднодоступные растениям.

Другой путь поступления ТМ в растения — некорневое поглощение из воздушных потоков. Оно имеет место при значительном выпадении металлов из атмосферы на листовой аппарат, чаще всего вблизи крупных промышленных предприятий. Поступление элементов в растения через листья (или фолиарное поглощение) происходит, главным образом, путем неметаболического проникновения через кутикулу. ТМ, поглощенные листьями, могут переносится в другие органы и ткани и включаться в обмен веществ. Не представляют опасности для человека металлы, осаждающиеся с пылевыми выбросами на листьях и стеблях, если перед употреблением в пищу растения тщательно промываются. Однако животные, поедающие такую растительность, могут получить большое количество ТМ.

По мере роста растений элементы перераспределяются по их органам. При этом для меди и цинка устанавливается следующая закономерность в их содержанию: корни > зерно > солома. Для свинца, кадмия и стронция она имеет другой вид: корни > солома > зерно. Известно, что наряду с видовой специфичностью растений в отношении накопления ТМ существуют и определенные общие закономерности. Например, наиболее высокое содержание ТМ обнаружено в листовых овощах и силосных культурах, а наименьшее — в бобовых, злаковых и технических культурах.

ЗАКЛЮЧЕНИЕ

Биосферу можно рассматривать как обобщенный объект анализа. На практике специалист той или иной области науки имеет дело с какой-либо одной составной его частью. Однако каждый конкретный объект находится в постоянной динамике, во взаимной связи с другими объектами и поэтому меняет не только свой состав, но и свойства. Порой эти изменения невелики, чтобы их можно было заметить, нужен некоторый период времени, в течение которого эти изменения произойдут. Однако используемые методы наблюдения, то есть биомониторинг, должны быть и чувствительными, и точными. Сложность окружающей среды как объекта анализа, ее изменчивость заставляют периодически проводить ревизию данных, совершенствовать и методы определения, и отдельные этапы анализа. Недавно такую ревизию провели в отношении данных по распространенности ртути и меди в окружающей среде. Оказалось, что ранее этапы пробоотбора и пробоподготовки были недостаточно совершенны и включали в себя систематическую ошибку. Ее учет в итоге привел к тому, что данные по содержанию ртути в отдельных объектах окружающей среды были завышены порой на порядок. Хотя прогноз по содержанию ртути в атмосферных выбросах на период до 2025 года предполагает удвоение количеств этого токсиканта, уже сейчас установлено, что в действительности ее концентрация меньше почти на порядок. Подобный же критический анализ данных ожидается и по оценке содержания меди.

СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ

1. Алексеев Ю.В. Тяжелые металлы в почвах и растениях. Л.: 1987. 365 с.

2. Ковда В.А. Биогеохимия почвенного покрова. М.: Наука. 1985. 243 с.

3. Орлов Л.С. Экология и охрана биосферы при химическом загрязнении. М.: Высшая школа, 2002. 334 с.

4. Тяжелые металлы в окружающей среде. М.: МГУ, 1980. 167 с.

Подобные документы

Тяжёлые металлы на территории больших городов

Понятие тяжелых металлов, их биогеохимические свойства и формы нахождения в окружающей среде. Подвижность тяжелых металлов в почвах. Виды нормирования тяжелых металлов в почвах и растениях. Аэрогенный и гидрогенный способы загрязнения почв городов.

Влияние солей тяжелых металлов на некоторых пресноводных гидробионтов

Тяжелые металлы в водной среде. Действие оксидов тяжелых металлов на организм некоторых пресноводных животных. Поглощение и распределение тяжелых металлов в гидрофитах. Влияние оксидов тяжелых металлов в наноформе на показатели роста и смертности гуппи.

Характеристика тяжелых металлов и их распространение в окружающей среде. Клиническая и экологическая токсикология тяжелых металлов. Атомно-абсорбционный метод определения содержания тяжелых металлов, подготовка и взятие органических проб гидробионтов.

Источники наличия тяжелых металлов в природных водах

Физические и химические свойства тяжелых металлов, нормирование их содержания в воде. Загрязнение природных вод в результате антропогенной деятельности, методы их очистки от наличия тяжелых металлов. Определение сорбционных характеристик катионитов.

Влияние тяжелых металлов на здоровье человека

Тяжелые металлы как группа химических элементов со свойствами металлов и значительным атомным весом либо плотностью, степень их распространенности в окружающей среде. Факторы, влияющие на концентрацию данных веществ в воздухе, влияние на человека.

Тяжелые металлы

Понятие экотоксикантов — долгоживущих в окружающей среде биологических веществ, включающихся в биологические циклы обмена и трансформации веществ в экосистемах и негативно влияющих на отдельные их виды. Классификация тяжелых металлов по их токсичности.

Содержание тяжелых металлов в высших водных растениях водоемов города Гомеля

Знакомство с методами обнаружения тяжелых металлов в высших водных растениях водоемов города Гомеля. Марганец как катализатор в процессах дыхания и усвоения нитратов. Рассмотрение особенностей процесса поглощения металлов растительным организмом.

  • главная
  • рубрики
  • по алфавиту
  • вернуться в начало страницы
  • вернуться к началу текста
  • вернуться к подобным работам

Источник https://mdmetalla.ru/metall/vliyanie-tyazhelyh-metallov-na-organizm-cheloveka-issledovatelskaya-rabota.html

Источник https://knowledge.allbest.ru/ecology/2c0a65625a3ad78a5c53b89421306d27_0.html

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *