Оборудование для литейного производства
Литейное производство — одна из отраслей металлургии, специализирующаяся на переработке металлов и их сплавов, в частности, изготовлением деталей различных конфигураций методом заливки расплавленного металла в специальную форму, под принудительным давлением или естественным путем, с последующим охлаждением до застывания в форме нужной отливки — готового изделия или заготовки. В случае необходимости отливка затем подвергается механической обработке, для большей точности размеров либо уменьшения шероховатости поверхности. Таким образом, основная цель литейного производства – изготовление отливок, максимально соответствующих по форме и размерам конечному изделию.
Для получения качественных отливок на производстве используется специальная литейная оснастка — литейные формы, и от качества их исполнения и особенностей конструкции в большой степени зависит не только качество конечного изделия, но и трудозатраты на производство.
На производстве к качественной литейной форме предъявляют ряд требований , основные из них:
- прочность (выдерживать нагрузки)
- податливость (при усадке отливки уменьшаться в объеме)
- газопроницаемость (при эксплуатации в литейной форме образуются газы)
- огнеупорность (не поддаваться воздействию расплавленного металла)
По степени участия непосредственно в процессе литья литейная оснастка подразделяется на формообразующую (основную) и универсальную (вспомогательную). По количеству возможных заливок литейные формы бывают разовые и многократные, также есть подразделение форм по материалу, из которого они изготовлены (песчаные, металлические и т.д.).
- литейные формы из металлов – чугуна и стали – выдерживают большое количество заливок, сотни и тысячи, поэтому относятся к многократным.
- песчаные формы и формы по выплавляемым моделям эксплуатируются с помощью приспособлений – моделей, они являются разовыми, а сам процесс производства таких форм называется «формовка». С помощью модели оформляют внутренние рабочие поверхности в песчаной литейной форме, они заполняются расплавленным металлом и формируют отливку.
Весь комплект приспособлений, необходимых для производства отливок, и представляет из себя литейную оснастку, а часть оснастки, необходимая для формирования рабочей полости в литейной форме при формовке – модельный комплект.
Изделия, полученные на литейном производстве из тугоплавких сплавов, необходимы в таких отраслях, как авиастроение, приборостроение, ракетостроение, судостроение, радиоэлектроника и атомная энергетика, а из коррозионно-стойких и жаропрочных сплавов – в химической промышленности. На сегодняшний день от 50% до 95% деталей промышленного оборудования изготавливается именно методом литья.
В современном литейном производстве широко применяется около пятидесяти технологий литья , наиболее часто используются:
- литье под давлением
- литье в песчаные формы
- литье по выплавляемым моделям
- литье в металлические формы или кокиля
- литье под низким давлением
- литье в оболочковые формы
- центробежное литье и др.
Коллектив Ульяновского Приборо-Ремонтного Завода обладает богатым опытом, позволяющим проектировать и изготавливать литейную оснастку для литья цветных металлов и сплавов, а именно: литья в кокиль, литья в песчаные формы (в землю), литья под давлением, а также осуществлять полный цикл изготовления пресс-форм для литья по выплавляемым моделям.
Модельные комплекты (оснастка) — литье в песчаные формы
Модельным комплектом называется технологическая оснастка, в том числе приспособления, которые формируют рабочую полость литейной формы; она включает в себя модели литниковой системы, модельные плиты, стержневые ящики, шаблоны сборочные и контрольные, а также литейную модель – приспособление, при помощи которого в литейной форме получается отпечаток, размерами и конфигурацией соответствующий необходимой отливке.
При изготовлении модели обязательно предусматривают припуски на механическую обработку готовой отливки, эти припуски закладываются при проектировании в чертеже отливки. Также размеры модели должны превышать размеры отливки на размер литейной усадки используемого при литье сплава. Эти и многие другие технологические особенности должны быть учтены специалистами при проектировании.
Литейные модели бывают разъемные и неразъемные, состоящие из двух или нескольких частей. По материалу изготовления модели бывают, в основном, пластмассовые, металлические и деревянные, так как модель должна быть одновременно прочной и жесткой, но легкой. Деревянные модели, с целью избежания коробления, изготавливают из отдельных склеенных брусочков, при этом важно разное направление волокон дерева.
Модели из дерева имеют свои преимущества – простота изготовления, умеренная стоимость, небольшой вес, и недостатки – малый срок службы, коробление, гигроскопичность, неоднородность структуры. Модели из металла используются при производстве отливок в больших количествах, в массовом производстве. Такие модели более долговечны, имеют более точную рабочую поверхность, однако они подвержены окислению и имеют очень большую массу. В зависимости от специфики работы такой оснастки и требований к условиям ее эксплуатации модели изготавливают из различных сплавов – на основе алюминия, стали, бронзы, латуни и чугуна. Пластмассовые модели сочетают в себе достоинства металлических и деревянных моделей, так как обладают небольшой массой, хорошей точностью, прочные, не поддаются короблению, устойчивы к воздействию влаги. Как правило, изготавливаются пластмассовые модели из составов на основе формальдегидных и эпоксидных смол.
В последнее время литье в песчаные формы применяется на производстве редко, большей частью, на крупных заводах авиационного, машиностроительного и автомобилестроительного производства. Как следствие, конструкторов и технологов, специализирующихся по этому виду литья, немного. В коллективе нашего предприятия имеются специалисты, обладающие опытом работы в этой достаточно сложной сфере.
Основную сложность составляет наличие большого количества стержневых ящиков, отъемных частей, а также необходимость создания двухсторонних моделей. Мы можем изготавливать металломодельную оснастку из алюминия и из стали. На такой оснастке можно лить цветные и черные металлы и сплавы, а также чугун.
Литье в кокиль
Литье в кокиль производится либо в стационарные кокиля, либо на кокильных машинах и станках. Для изготовления этого вида оснастки необходим высокий уровень и квалификации инженерного состава, и инструментального производства.
Наше предприятие обладает всем необходимым для осуществления проектирования и изготовления кокилей любой сложности, в том числе и с последующей привязкой их к оборудованию заказчика. Чаще всего испытания изготовленной оснастки мы производим на собственном оборудовании. Для оказания технической помощи при запуске оснастки на предприятии заказчика мы можем организовать выезд к нему наших специалистов.
Литье под давлением цветных металлов и сплавов
В последнее время такой вид литья получил большое распространение. Отливки, получаемые в процессе литья под давлением, применяются в производстве мебели, бытовой техники, в автомобилестроении и многих других видах производства. Такие изделия очень прочные, герметичные и имеют хороший товарный вид. Оснастка для литья под давлением металлов и сплавов рассчитана на сотни тысяч, даже миллионы циклов литья, однако достаточно сложная для изготовления и дорогостоящая.
Для эксплуатации оснастки такого вида существует много разновидностей машин литья под давлением, модельный ряд постоянно обновляется. Они подразделяются на машины литья с горизонтальной камерой прессования и с вертикальной камерой прессования. Каждый из этих видов имеет свой ряд по габаритам, мощности, особенностям конструкции и производителям.
Наше предприятие успешно выполняло проектирование, изготовление и запуск в производство пресс-форм для пластмасс и металлического литья изделий, используемых в машиностроении, а также для производства продукции бытового назначения.
Пресс-формы для литья цветных металлов и сплавов под давлением могут быть разной степени сложности: с ползунами, с гидроцилиндрами, с наклонными толкателями, с вкладышами, одногнездные, многогнездные, с многими плоскостями разъема и т.д.. Для изготовления оснастки любой сложности у нас есть необходимый опыт и оборудование. В большинстве случаев имеем возможности и для эксплуатации этой оснастки на собственном оборудовании.
Литье по выплавляемым моделям
Литье по выплавляемым моделям чаще всего применяется для получения тонкостенных отливок сложной конфигурации, как в машиностроении, так и в художественной промышленности. Это один из самых древних способов литья скульптур, колоколов, пушек. Характерная особенность данного вида литья – каждая модель может быть использована для получения только одной отливки, так как в процессе изготовления формы вытапливается, а сама формовочная смесь состоит не из однородного расплавленного металла, а из огнеупорного мелкозернистого, пылевидного материала в связующем растворе. Именно такой состав смеси способствует получению отливок с высоким качеством поверхности. Точность самого отпечатка модели обеспечивается с помощью увеличенной температуры металла, поэтому формовочные и связующие материалы должны обладать высокой огнеупорностью. Недостаток такого метода – сложный и длительный процесс изготовления отливок, для которого необходима специально изготовленная дорогостоящая оснастка и грамотные высококвалифицированные специалисты.
Такой вид литья используется для литья черных и цветных металлов и сплавов. Конструкция пресс-форм очень разнообразна и зависит от планируемой потенциальной производительности и оборудования, на котором оснастка будет эксплуатироваться.
В машиностроении восковые модели отливок изготавливаются в гипсовых, пластмассовых и металлических формах; сам технологический процесс, как правило, механизирован и автоматизирован. Методом литья по выплавляемым моделям производятся детали для авиационной, приборостроительной, машиностроительной и некоторых других отраслей промышленности, где применяются технологии литья труднообрабатываемых сплавов, жаропрочных и коррозионно-стойких.
Оснастка для литья по выплавляемым моделям бывает механизированной (конструкции аналогичны пресс-формам для литья под давлением) и ручной разборки (конструктивно более разнообразны и производят отливки более сложной геометрии). Если от изделия требуется высокая степень точности, прочности и герметичности, то алюминиевые отливки такого вида литья предпочтительнее, чем отливки литья под давлением. При литье по выплавляемым моделям из черных металлов изделия получаются более точными и красивыми, чем отливки в песчаные формы. Наше предприятие может выполнить любой заказ по проектированию и изготовлению оснастки для литья по выплавляемым моделям, в тои числе с привязкой к оборудованию заказчика.
Оборудование для литейного производства
Для того чтобы наладить успешное литейное производство сегодня, необходимо современное литейное оборудование, которое обеспечит высокую технологичность, продуктивность и экономичность всех производственных процессов.
В литейных цехах разных отраслей промышленности используется оборудование общего применения и специализированное технологическое оборудование, необходимое исключительно для литейного производства.
Непосредственно литейным оборудованием являются:
- Плавильные печи.
- Литейные машины.
- Заливочные устройства, механизмы, манипуляторы, средства транспортирования и системы управления, датчики предназначенные для изготовления отливок
- Литейные автоматы, установки, комплексы.
- Ковши литейные.
К общему оборудованию относятся
- Аспирационные системы,
- Смесители,
- Тиристоры,
- Трансформаторы,
- Конденсаторы,
- Различные типы конвейеров,
- Монорельсовый транспорт,
- Крановое хозяйство,
- Подъемники,
- Системы бункеров,
- Питатели,
- Магнитные сепараторы,
- Вентиляционные,
- Калориферные установки.
Современное литейное оборудование значительно отличается от оборудования прошлого. В основном это установки с программным обеспечением, механизированные, автоматизированные системы, использующие высокие и высокоточные технологии в производстве.
Плавильные печи
Основным литейным оборудованием является плавильная печь. Она производится из высокопрочной стали, с использованием теплоизоляторов и огнеупорных материалов повышенной стойкости.
По способу литья печи делятся на индукционные, элекродуговые, газовые и муфельные. Рассмотрим устройство и принцип работы каждой из них отдельно.
Индукционная плавильная печь
См. на рис. 1 а. Построена на принципе экономичного индукционного нагрева — расплавления металла в результате прохождения через него вихревого электрического тока. Электромагнитное поле создается посредством индуктора.
Печь состоит из плавильного тигеля, сделанного из огнеупорного графита, куда помещается металлическая шихта. Тигель, как правило, имеет цилиндрическую форму. Он находится внутри индуктора, который подключен к источнику переменного тока. Благодаря явлению электромагнитной индукции за счет теплового воздействия электромагнитного поля, шихта нагревается и расплавляется. Одним из преимуществ индукционных печей является высокая гомогенность (однородность) сплава, которая достигается благодаря электродинамической циркуляции, перемешивания во время индукционного плавления. Это один из самых быстрых способов плавки. Имеют преимущества в быстроте процесса, малой загрязненности воздуха, экономичности. Тигли графитовые (для бронзы, латуни, меди золота, серебра), чугунные и стальные (для алюминия) или керамические (для чугуна, стали)
В зависимости от объема расплавляемого материала и размера тигля, индукционные плавильные печи делятся на:
- Индукционные печи от 5 до 200 кг для золотодобывающей, инструментальной и ювелирной промышленности, стоматологии, художественной и экспериментальной плавки. Самые мобильные печи для плавки золота, серебра, платины, цветных и черных металлов. ИПП-15,25,35,45,70,90,110,160 (в цифрах указана мощность печи) имеют массу от 34 до 130 кг и способны перерабатывать от 5 до 200 кг металла.
- Индукционный печи от 100 до 1000 кг для плавки цветных металлов. Максимальная температура 1400 °C . Свойства аналогичные, увеличивается размер печи и объем тигля.
- Индукционные плавильные печи от 100 до 20 000 кг. Используются для плавки стали, чугуна, иногда цветных металлов токами средней частоты. Это печи производственного назначения, которые используются на металлургических промышленных предприятиях. Например, в производстве стального проката. Их производительность до 150 тысяч тонн сортового проката в год.
Индукционные печи позволяют быстро переходить от одного вида сплава к другому, делать перерывы между процессами, удобны в обслуживании и эргономичны, имеют большие возможности для автоматизации процессов. В печи может быть создана любая атмосфера (нейтральная, окислительная, восстановительная) и любое давление. Возможность управлять плавкой, регулировать мощность и нагрев тигля позволяет использовать разные режимы работы для разных сплавов. Высокое значение удельной мощности на средних частотах позволяет достичь высокой производительности печи.
Электрическая дуговая плавильная печь
См. на рис. 1 б. Металл нагревается электродугой переменного или постоянного тока, которая возникает между тремя цилиндрическими графитовыми электродами и металлическим шихтом. Такие печи вмещают от 0,5 до 400 тонн металла. Внутри цилиндрической печи используется футировка основным или кислым кирпичом. Во время плавки технологически осуществляется покачивание и перемешивание металла. В дуговой печи используется
- Плавка шихты из легированных отходов без окисления, в этом случае удаляется сера, проводится диффузное раскисление с помощью ферросилиция, молотого кокса, алюминия. И получают легированные стали.
- Плавка на углеродистой шихте с окислением. В качестве шихты – старый чугун, стальной лом, электродный лом, кокс, известь. Во время плавления происходит окисление под воздействием воздуха. Затем месь раскисляют осаждением и диффузным методом, алюминием и силикокальцием. Таким образом выплавляют конструкционные стали.
Электрическая дуговая печь используется для производства жаростойкой, инструментальной и конструкционной высококачественной углеродистой и легированной стали .
Газовые плавильные печи
См. на рис. 1 в. Тепло образуется от горения газово-воздушной смеси, с помощью которого нагревается жаростойкий тигель, в таких печах плавят алюминий, медь, олово, драгоценные металлы, свинец. Газовая печь позволяет достичь максимально точного температурного контроля, что важно для выплавки цветных и ценных металлов.
Муфельная печь
См. на рис. 1 г. В муфельной печи используется защитный материал муфель, который выдерживает температуру не больше 950 °C. Это ограничивает сферу применения.
Современные машины для литья
В соответствии со способом прессования в камере машины для литья делят на два вида:
- Литейные машины с горячим прессованием. Под слабым давлением поршня или сжатого воздуха камера погружается в горячий расплав, который вытесняется в пресс-форму. Так отливаются сплавы с цинком.
- Литейные машины с холодным прессованием.Тут используется высокое давление. Используются преимущественно для медных, магниевых и алюминиевых сплавов.
Использование современных способов автоматизации процесса литья, позволяет создать машины высокой точности и качества сплавов. Рассмотрим это на примере нескольких современных машин для литья алюминия.
Наклоняющиеся литейные машины – новейшее технологическое решение с точным заполнением формы и полным контролем над дозированием и поведением расплава с помощью электрического сервопривода. Стержни вставляются автоматически или вручную. После закрытия заливается расплав. Сервопривод контролирует движение, наклон, процесс литья качанием, предупреждает перекос при открытии формы. Машина обеспечивает идеальный доступ к форме, эргономичность и для заполнения формы, и во время очистки (гидравлический способ выталкивания компонента).
Машины для литья головок цилиндров
Литейная форма закрывается актюаторным элементом стационарного характера после того, как туда вставлены стержни. Алюминий заливают в форму, после усадки форма открывается, деталь извлекается. Литейная машина вновь готова к заливке. Все происходит быстро, очень удобно, точно. Кабели и настройки надежно защищены, ремонт очень простой, доступ к форме идеальный. Конструкция прочная, максимально функциональная для проведе
ния четких последовательных операций.
Литейные машины для 3х форм
В литейных машинах используется метод гравитационного литья с единовременным участием 3 форм. Значительно повышается продуктивность и эргономичность процесса, зона обслуживания минимальна, все происходит на одной машине: и установка стержней, и заливка, и извлечение отливок
Для отлива алюминия используются роторно-линейные машины, работающие под низким давлением и стабилизированным заполнением за счет регулируемого наклона формы, а также машины с противодавлением, использующиеся для создания высококачественных отливок из алюминия, где под давлением находится печь и пресс-форма внутри, создается перепад давлений, значительно повышающий качество продукции. Это еще более автоматизированный и оптимизированный, по сравнению с гравитационным, способ литья, который используется для отливок с прочными равномерно утолщенными стенками.
Литейные автоматы, установки, комплексы.
В литейном производстве сегодня могут активно использоваться новейшие элементы автоматизации, которые представлены такими устройствами:
- Поворотными столами
- Литейными роботами
- Роботами манипуляторами
Современное литейное производство использует сегодня автоматизированные литейные комплексы
- Литейные карусели для крупносерийного и массового производства с поворотным столом, роботами-съемщиками отливок, роботами-установщиками стержней, конвейером охлаждения и плавильными печами.
- Роботизированная литейная ячейка состоит из литейных машин, стола для ручной установки стержней, робота литейного, робота, снимающего отливки, конвейера охлаждения, станции перемены захватов, плавильно-раздаточных печей.
- Литейная автоматизированная линия – комплекс, в который входят литейные машины, манипуляторы для транспортировки и установки стержней и пакетов, манипуляторы для извлечения и перемещения готовых отливок, роботы-съемщики, плавильно-раздаточные печи.
Ковши литейные
Литейные ковши – необходимый элемент литейного производства, который позволяет хранить, транспортировать и производить безопасную разливку расплавленного металла для дальнейшего литья.
Ковши перемещают на специальных тележках или с помощью гибкого производственного модуля. В общем, литейный ковш – это емкость для металла. Различаются ковши
Аддитивные технологии и литейное производство
При разработке и создании новой промышленной продукции особое значение имеет скорость прохождения этапов НИОКР, которая в свою очередь существенно зависит от технологических возможностей опытного производства. В частности, это касается изготовления литейных деталей, которые часто являются самой трудоемкой и дорогостоящей частью общего проекта. При создании новой продукции, особенно на этапе ОКР, в опытном производстве, для которого характерны вариантные исследования, необходимость частых изменений конструкции и, как следствие, постоянной коррекции технологической оснастки для изготовления опытных образцов – проблема быстрого изготовления литейных деталей становится ключевой.
В опытном производстве преимущественно остаются традиционные методы изготовления литейной оснастки (в основном – деревянные модели) вручную или с использованием механообрабатывающего оборудования. Это связано с тем, что на этапе ОКР в условиях неопределенности результата, когда конструкция изделия ещё не отработана, не утверждена. Для изготовления образцов нецелесообразно создавать «нормальную» технологическую оснастку под серийное производство. В этих условиях весьма дорогостоящая продукция – литейная оснастка – оказывается, по сути разовой, которая в дальнейшей работе над изделием не используется в связи с естественными и существенными изменениями конструкции изделия в ходе ОКР. Поэтому каждая итерация, каждое приближение конструкции детали к окончательной версии требует зачастую и новой технологической оснастки, поскольку переделка старой оказывается чрезмерно трудоемкой или вообще не возможной. И в этой связи традиционные методы оказываются не только дороги в плане материальных потерь, но и чрезвычайно затратны по времени.
Использование аддитивных технологий в литейном производстве позволяет «выращивать» литейные модели и формы, которые невозможно было изготовить традиционными способами, а также значительно сокращает сроки изготовления модельной оснастки. Использование в процессе вакуумного литья форм и моделей, полученных с помощью аддитивных технологий, дало возможность уменьшить время изготовления пилотных, опытных образцов и в ряде случаев серийной продукции – в десятки раз.
Переход на цифровое описание изделий – CAD и появившиеся вслед за CAD аддитивные технологии произвели кардинальные изменения в литейном производстве, что особенно проявилось в высокотехнологичных отраслях – авиационной и аэрокосмической промышленности, атомной индустрии, медицине и приборостроении, в отраслях, в которых характерным является малосерийное, штучное производство.
Применение методов получения литейных синтез-форм и синтезмоделей за счет технологий послойного синтеза позволило радикально сократить время создания новой продукции. Например, для изготовления первого опытного образца детали, характерной для автомобильного двигателестроения – блок цилиндров – традиционными методами требуется не менее шести месяцев, при этом основные временные затраты приходятся на создание модельной оснастки для литья «в землю». Использование для этой цели технологии Quick-Cast («выращивание» литейной модели из фотополимера на SLA-машине с последующим литьем по выжигаемой модели, рисунок 1) сокращает срок получения первой отливки до двух недель. Эта же деталь может быть получена менее точной, но вполне пригодной для данных целей технологией – литьем в «выращенные» песчаные формы, рисунок 2, на машинах типа ExOne.
Значительная часть отливок, не имеющих специальных требований по точности литья или структуре, может быть получена в виде готовой продукции в течение 4-5 дней с учетом подготовительно-заключительного времени: прямое «выращивание» восковой модели или Quick-Сast-модели (один день); формовка+сушка формы (1-2 дня); прокалка формы и собственно литье (1-2 дня).
(Предоставлено ФГУП «НАМИ»)
Рисунок 1. Блок цилиндров: а – Quick-Сast-модель; б – чугунная отливка.
(Экспонат выставки Euromold 2012, ExOne)
Рисунок 2. Блок цилиндров: фрагменты песчаной формы
Развитие трёхмерных CAD/CAM/CAE-технологий привело к существенной модернизации современного литейного и, в первую очередь, опытного производства. Цель этой модернизации в создании условий для полноценной реализации принципа «безбумажных» технологий в течение всего процесса построения нового изделия – от проектирования и разработки CAD-модели до конечного продукта – быть неотрывной частью цикла проектирования и изготовления изделий различного назначения с широкой номенклатурой применяемых материалов. Для этого литейные
Читать статью Литейное оборудование | это. Что такое Литейное оборудование?
цеха и участки оснащают новым оборудованием, дающим широкие возможности, но требующим освоения новых знаний.
Одним из перспективных направлений применения AMтехнологий является изготовление технологической оснастки – приспособлений и инструментов для серийного производства. В частности, изготовление вставок для термопласт-автоматов (ТПА), рисунок 3, для последующего литья пластмассовых изделий.
(Экспонат выставки Euromold 2012, 3D Systems)
Рисунок 3.Выращенная металлическая пресс-форма для литья на ТПА
1. Технологии литья металлов с использованием синтез-моделей и синтез-форм
В рамках одной работы невозможно привести описание всех технологий и машин для послойного синтеза для целей литейного производства. Здесь мы ограничимся лишь теми технологиями, которые имеют наибольший интерес применительно к задачам машиностроения, опуская из рассмотрения довольно обширную тему технологий и машин, предназначенных для решения специальных задач общей медицины, биологии и стоматологии, электронной или ювелирной промышленности.
Особое значение AM-технологии имеют для ускоренного производства отливок. AM-машины используются для получения: литейных моделей; мастер-моделей; литейных форм и литейной оснастки.
Литейные модели могут быть получены («выращены») из следующих материалов:
- порошковых полимеров для последующего литья по выжигаемым моделям;
- фотополимерных композиций, в частности, по технологии Quick-Сast для последующего литья по выжигаемым моделям или по технологии MJ (Multi Jet) для литья по выплавляемым моделям.
1.1 Синтез-модели из порошковых полимеров
SLS-технология. Полистирол широко используется в качестве модельного материала для традиционного литья по выжигаемым моделям. Однако в связи с бурным развитием технологий послойного синтеза приобрел особую популярность в области прототипирования, а также для промышленного изготовления штучной и малосерийной продукции. Полистирольные модели изготавливаются на AM-машинах (рисунок 4), работающих по SLS-технологии. Данную технологию часто применяют для изготовления отливок сложной формы относительно больших размеров с умеренными требованиями по точности.
Рисунок 4. SLS-машина sPro 60 (а); полистирольная модель (б); и алюминиевая отливка головки цилиндра ДВС (в)
SLS-технология относится к категории Powder Bed Fusion согласно классификации ASTM (см. Гл. 1 и рисунок 1 а) и заключается в следующем. Модельный материал – полистирольный порошок с размером частиц 50-150 мкм накатывается специальным роликом на рабочую платформу, установленную в герметичной камере с атмосферой инертного газа – азота. Лазерный луч «пробегает» там, где компьютер «видит» в данном сечении CAD-модели «тело», как бы «заштриховывая» сечение детали, как это делает конструктор карандашом на чертеже. В этом случае лазерный луч является источником тепла, под воздействием которого происходит спекание частичек полистирола (рабочая температура около 120°С). Затем платформа опускается на 0,1-0,2 мм, и новая порция порошка накатывается поверх отвержденного – формируется новый слой, который также спекается с предыдущим. Процесс повторяется до полного построения модели, которая в конце процесса оказывается заключенной в массив неспеченного порошка. Далее модель извлекают из машины и очищают от порошка. Преимуществом данной технологии является отсутствие поддержек, поскольку во время построения модель и все её строящиеся слои удерживаются массивом порошка.
Имеющиеся на рынке машины фирм 3D Systems и EOS (таблица 1) позволяют строить достаточно крупные модели размерами до 550х550х750 мм без необходимости склейки отдельных фрагментов, что повышает точность отливки и надежность, особенно вакуумного литья. При этом возможна высокая детализация построения моделей: могут быть построены поверхностные элементы (номера деталей, условные знаки, надписи и пр.) с толщиной фрагментов до 0,6 мм; гарантированная толщина стенки модели – до 1,5 мм.
Технологии литья по восковым и полистирольным моделям принципиально не отличаются, поскольку используются одинаковые формовочные материалы, литейное и вспомогательное оборудование. Отличия заключаются в том, что восковая модель – «выплавляемая», а полистирольная модель – «выжигаемая», а также в нюансах формования и термообработки опок, имеющих немаловажное значение.
При работе с полистирольными моделями выделяются требующие нейтрализации горючие газы: материал частично выгорает в самой форме, в результате чего возникает опасность образования золы и засорения формы, поэтому необходимо предусмотреть возможность стекания материала из застойных зон. Безусловным требованием является использование прокалочных печей с программаторами, так как программа выжигания полистирола существенно отличается от программы вытапливания воска. При определенном навыке и опыте литье по выжигаемым полистирольным моделям дает хороший результат (рисунок 5).
Таблица 1. Машины для технологии послойного синтеза моделей из полимерных порошковых материалов
К недостаткам технологии надо отнести следующее. Процесс спекания порошка – это тепловой процесс, характеризующийся неравномерностью распределения тепла по рабочей камере и массиву материала, короблением вследствие температурных деформаций. В результате того, что порошок полистирола не сплавляется, как например, порошки полиамида или металла, а именно спекается: структура модели – пористая, похожая на структуру пенопласта. Это в дальнейшем облегчает удаление материала модели из формы с минимальными внутренними напряжениями при нагревании. Построенная модель требует весьма аккуратного обращения при очистке и при дальнейшей работе в подготовке к формованию.
Рисунок 5. Полистирольная модель: а – после «выращивания»; б – после инфильтрации; в – чугунная отливка
Для придания прочности и хорошего соединения с литниковой системой и формовки модель пропитывают специальным составом на восковой основе – этот процесс называется инфильтрацией. После этого модель помещают в специальную печь и при температуре около 80°С пропитывают специальным воскообразным составом (инфильтрированные модели красного цвета, из машины же извлекаются полистирольные модели снежно-белого цвета). Это также несет в себе опасность деформирования модели и требует определенных навыков персонала.
Использование инфильтрата в виде воска имеет и свои преимущества: он расплавляется в опоке при выжигании раньше полистирола и, когда полистирол приобретает текучесть, удаляет его из формы, тем самым уменьшая массу «выжигаемой» части полистирола и снижая вероятность образования золы.
В последние годы появляются новые модельные материалы. Например, в машинах EOS используется полистирол, не требующий инфильтрации воском после построения модели (рисунок 6). Однако это ослабляет, но не устраняет присущий SLS-технологиям недостаток. Таким образом, когда мы говорим об «умеренных требованиях к точности» при использовании SLS-технологии, то имеем в виду
Рисунок 6. Полистирольная модель и отливка детали двигателя
Следовательно, когда мы говорим об «умеренных требованиях к точности» при использовании SLS-технологии, то имеем в виду отмеченные объективные причины, по которым точность изделий, полученных SLS-технологией, не может быть выше, чем при использовании других технологий, не связанных с температурными деформациями. Таковой является технология фотополимеризации (например, SLA или DLP).
Ink-Jet-технология. В последние годы успешно применяется и другая технология получения выжигаемых синтез-моделей – Ink-Jet от компании Voxeljet Technology (Германия). В качестве модельного материала используется порошковый акриловый полимер (PMMA – полиметилметакрилат – «оргстекло», modified acrylic glass). Модельный ряд машин Voxeljet представлен на рисунке 7 и в таблице 1.
Рисунок 7. Модельный ряд машин Voxeljet
В процессе работы жидкий связующий состав впрыскивается через многосопловую головку и связывает (склеивает) основной модельный материал в соответствии с параметрами текущего горизонтального сечения CAD-модели. Один слой формируется примерно за 30 с, и таким методом при шаге построения 0,2 мм машина может строить модели со скоростью от 12 до 48 мм в час по высоте.
В базовой версии машины VX500 и VX800 оснащаются распылительной головкой GSH 768, имеющей 768 пьезоэлектрических форсунок. В этом случае достигается разрешение 250 dpi (точек на дюйм). В качестве опции может быть установлена головка C-VKH 2656, обеспечивающая разрешение до 600 pi и возможность уменьшения шага построения до 80 мкм. Предусмотрена также опция быстрой смены контейнера, на установку которого требуется около 30 с. Машины Voxeljet позиционируются как более производительные и дешевые альтернативы машинам 3D Systems и EOS.
Модель VX1000 оснащена мощной печатающей головкой с 10624 форсунками, которая позволяет получить разрешение до 600 dpi. Толщина слоя за один проход составляет 100 мкм при ширине печати 450 мм, время создания слоя – менее 30 с.
Машины VX 2000 и VX 4000 с полным основанием можно отнести к классу индустриального технологического оборудования. Многими компаниями они рассматриваются как реальная альтернатива традиционным литейным технологиям.
В ОАО «НИАТ», ФГУП «НАМИ» (Россия) имеется опыт работ с моделями от Voxeljet для литья по выжигаемым моделям (рисунки 8, 9). К достоинствам технологии следует отнести то, что процесс построения модели ведется при комнатной температуре, что снижает риск тепловых деформаций, характерных для SLS-технологии. Модели также подвергаются инфильтрации воском, но сам процесс проходит в более щадящем режиме, чем при инфильтрации полистирольных моделей.
Говоря об SLS-технологии, отметим ещё одно, не связанное с полистиролом, но «родственное» направление, иногда используемое в литейном деле. Это «выращивание» литейной формовочной оснастки из порошкового полиамида. Полиамид широко применяется для функционального прототипирования, полиамидные модели достаточно прочные и во многих случаях позволяют воспроизвести прототип максимально близко к конечному изделию.
Рисунок 8. Отливка и модель кронштейна
Рисунок 9. Модели Voxeljet и алюминиевые отливки: а – крышка; б – впускная труба; в – головка цилиндров ДВС
В ряде случаев экономически целесообразно применять полиамидные модели в качестве альтернативы деревянным. Пример такой «быстрой» технологической оснастки для формовки распределительного вала ДВС показан на рисунке 10.
Рисунок 10. Полиамидная модель: SLS-модель распределительного вала и формовочный ящик
Модель «выращивают», так же, как и полистирольную. При этом по возможности делают её полой с минимально возможной толщиной стенок (с целью минимизации указанных выше температурных деформаций). Затем полость модели для придания прочности и жесткости заполняют эпоксидной смолой. После этого закрепляют в обычном формовочном ящике, красят и далее – по традиционной технологии формования. Ввиду большой длины модель «выращена» из двух частей: части склеены, заполнены эпоксидной смолой и закреплены в формовочном ящике; продолжительность операций два дня.
1.2 Синтез-модели из светоотверждаемых смол
Суть технологии заключается в использовании специальных светочувствительных смол, которые отверждаются избирательно и послойно в местах подвода по заданной программе луча света. Способы засветки слоя различны (лазер, ультрафиолетовая лампа, прожектор видимого света, светодиоды). Наибольшее распространение для литья металлов получили SLA, Poly-Jet и DLP-технологии. Первый способ предполагает последовательное «пробегание» лазерного луча по всей поверхности формируемого слоя там, где в сечении «тело» модели. Согласно второму способу отверждение производится лучом в виде линии в процессе формирования слоя за счет излучения от управляемой ультрафиолетовой лампы. Третий способ предполагает засветку всего слоя одновременно за счет создания так называемой маски – «фотографии» текущего сечения CAD-модели.
Различие в способах формирования слоев обусловливает и различие в скорости построения модели. Скорость «выращивания» по DLP- и Poly-Jet-технологиям выше. Но стереолитография по-прежнему остается самой точной технологией и применяется там, где требования к чистоте поверхности и точности построения модели являются основными и определяющими.
Технологии нелазерной «засветки» с заданной экспозицией, используемые, например, фирмами Stratasys и Envisiontec, во многих случаях успешно конкурируют со стереолитографией, оставляя за собой явное преимущество в скорости построения и стоимости моделей. Ряд производственных задач может быть успешно решен с помощью AM-машин разного уровня.
Итак, рациональный выбор технологии получения моделей и, следовательно, АМ-оборудования должен проводиться с учетом конкретных производственных условий и реальных требований к моделям. В тех случаях, когда решаются разнообразные задачи целесообразно иметь две машины: одна для изготовления изделий с повышенными требованиями, вторая – для выполнения «рутинных» задач и тиражирования моделей.
SLA – лазерная стереолитография. Фирма 3D Systems – пионер в области практического освоения технологий быстрого прототипирования, в 1987 г. представила для коммерческого освоения первую стереолитографическую машину SLA-250 с размерами зоны построения 250х250х250 мм.
Основой в SLA-процессе является ультрафиолетовый лазер (твердотельный или СО2). Лазерный луч в данном случае – не источником тепла, как в SLS-технологии, а источник света. Луч «штрихует» текущее сечение CAD-модели и отверждает тонкий слой жидкого полимера в местах прохождения. Затем платформа, на которой производится построение, погружается в ванну с фотополимером на величину шага построения, и новый жидкий слой наносится на затвердевший слой, и новый контур «обрабатывается» лазером. При «выращивании» модели, имеющей нависающие элементы, одновременно с основным телом модели из того же материала строятся поддержки в виде тонких столбиков, на которые укладывается первый слой нависающего элемента, когда приходит черед его построения. Процесс повторяется до завершения построения модели. Затем модель извлекают, остатки смолы смывают ацетоном или спиртом, поддержки удаляют. Для повышения прочности модели помещают в специальную камеру дополимеризации – шкаф с ультрафиолетовой лампой.
Качество поверхности стереолитографических моделей весьма высокое, и часто модель не требует последующей обработки. При необходимости чистота поверхности может быть улучшена – «зафиксированный» фотополимер хорошо обрабатывается и поверхность модели может быть доведена до зеркальной. В некоторых случаях, если угол между строящейся поверхностью модели и вертикалью меньше 30, модель может быть построена без поддержек. Так могут быть построены модели, для которых не возникает проблем удаления поддержек из внутренних полостей, что позволяет получать модели, которые невозможно изготовить традиционными методами (рисунок 11).
Рисунок 11. Ювелирное изделие: а – SLA-выжигаемая модель; б – серебряная отливка
Стереолитография широко применяется в следующих направлениях:
- выращивание литейных моделей;
- изготовление мастер-моделей (для последующего получения силиконовых форм, восковых моделей и отливок из полиуретановых смол);
- создание дизайн-моделей, макетов и функциональных прототипов;
- изготовление полноразмерных и масштабных моделей для гидродинамических, аэродинамических, прочностных и других видов исследований, но в контексте данной работы отметим первые два направления, которые важны для непосредственного получения литейных деталей.
Для изготовления литейных деталей применяют так называемые Quick-Cast-модели (рисунок 12), т. е. модели для «быстрого литья», по которым, по аналогии с восковыми моделями, могут быть быстро получены металлические отливки (рисунок 13, 14). Quick-Cast-модели используют в технологических процессах аналогично применению восковых и полистирольных моделей. Но есть важный нюанс. Модели Quick-Cast имеют сотовую структуру массива: внешние и внутренние поверхности выполняют сплошными, а само тело формируют в виде набора сот. Это, во-первых, на 70% снижает общую массу модели, а, следовательно, меньше модельного материала нужно выжигать при подготовке формы к заливке металлом. Во-вторых, в процессе выжигания любой модельный материал расширяется и оказывает давление на стенки формы, при этом форма с тонкостенными элементами может быть разрушена. Сотовая же структура позволяет модели при расширении «складываться» внутрь, не создавая внутренних напряжений и не деформируя стенки формы. Это важнейшее преимущество Quck-Cast-технологии.
Рисунок 12. Quick-Сast модель: а – после выращивания; б – оснащенная литниковой системой
(Предоставлено ФГУП «НАМИ»)
Рисунок 13. Алюминиевая отливка головки цилиндров
Если сравнить две отливки, полученные по выжигаемым моделям: Voxeljet – представленную выше на рисунке 9 б, и SLA – показанную на рисунке 15, то нетрудно заметить, рисунок 16, разницу в чистоте поверхности отливки в пользу отливки, полученной по выжигаемой SLAмодели (рисунок 16 б).
Рисунок 14. Quick-cast-модель с литниковой системой и алюминиевая отливка цилиндра ДВС
Рисунок 15. Корпусная деталь: а – SLA-Quick-Cast-модель, оснащённая литниковой системой; б – алюминиевая отливка
Рисунок 16. Сравнение чистоты поверхности отливки: а – полученная по модели Voxeljet; б – полученная по SLA-модели по технологии Quick-Cast
Однако Quick-Cast-модели – это теряемые, разовые литейные модели, полученные без специальной оснастки. Такой способ применяют, когда требуется изготовить одну-две отливки. В тех случаях, когда необходимо получить партию (10 – 100) отливок применяют другой, более экономичный способ. «Выращенную» на SLA-машине модель используют в качестве мастер-модели. По мастер-модели делают так называемую эластичную форму (чаще всего из силикона). В эту форму заливают расплавленный воск (обычно в вакуумной камере) и получают требуемое количество восковых моделей – «восковок», которые затем используют в качестве литейных моделей, применяя известные способы литья по выплавляемым моделям (рисунок 17). С помощью данной технологии могут быть изготовлены литейные восковые модели с весьма сложной геометрией, рисунок 18.
Для получения силиконовых форм, восковых моделей и для заливки металла используют вакуумные литейные машины. Применение качественных формовочных материалов позволяет получить отливки с высокой чистотой поверхности на уровне Rz 20-40.
Формование восковок производят как в монолитные, например, гипсо-керамические, так и в оболочковые формы. В отдельных случаях SLA-модели могут быть использованы в качестве оснастки – формовочной
Рисунок 17. Получение отливок с использованием SLA-мастер-модели: а – мастер-модель (SLA); б – силиконовая форма; в – восковая модель; г – отливка
Рисунок 18. Мастер-модель и восковка турбинного колеса автомобильного турбокомпрессора
модели для литья «в землю». В этом случае в конструкции модели предусматривают усадочный коэффициент – литейные уклоны и радиусы для извлечения модели без повреждения формы (рисунок 19). Однако такой способ формовки используется редко из-за недостаточной прочности SLAмодели.
Рисунок 19. Передняя крышка ДВС: а – CAD-модель, б – SLA-модель в качестве формовочной модели; в – алюминиевая отливка «в землю»
К преимуществам технологии Quck-Cast относится точность построения модели. Поскольку процесс построения происходит при комнатной температуре, то факторы термического напряжения и деформаций отсутствуют. Малый диаметр пятна лазерного луча (0,1-0,05 мм) позволяет четко «прорабатывать» тонкие, филигранные фрагменты модели, что сделало стереолитографию популярной технологией и в ювелирном деле.
В России имеется опыт применения технологии Quck-Cast в авиационной промышленности («НИАТ», «Салют», «Сухой», УМПО, «Рыбинские моторы»), в энергетическом машиностроении (ОАО «ТМЗ» – Тушинский машиностроительный завод), рисунок 20, 21. Некоторый опыт имеется и в научных организациях автомобильного профиля. В ФГУП «НАМИ» по этой технологии впервые в России были получены отливки таких сложных деталей, как головка и блок цилиндров автомобильного двигателя. Однако, для многих отечественных предприятий эта технология остается практически неосвоенной.
Рисунок 20. Рабочее колесо турбины: а – SLA-модель; б – оболочковая форма; в – отливка, полученная по технологии Quick-Cast
Стереолитография – «конек» фирмы 3D Systems, и фактически в этой области она является монополистом в Европе и США. Модельный ряд машин 2014 года показан на рисунке 22 и в таблице 2.
Рисунок 21. Рабочее колесо турбины: а, б – выжигаемая SLA-модель; в – отливка из нержавеющей стали, полученная по технологии Quick-Cast
Стереолитография позволяет получать отливки методом «direct manufacturing». SLA-машины серий ProJet 6000 и 7000 активно используются для решения задач НИОКР в университетах, применяются в ювелирной и медицинской промышленности. Точность построения 0,025- 0,05 мм на 25 мм линейного размера модели. Машины могут строить модели с толщиной стенки 0,05-0,2 мм, время построения модели зависит от
загрузки рабочей платформы и от шага построения и в среднем составляет 4-7 мм в час по высоте модели.
Для литейного производства в мировой промышленности достаточно активно используются машины серии iPro (новое название серии – ProX). По требованию заказчика машины могут оснащаться ваннами различного размера. Это позволяет экономить дорогостоящий модельный материал – для построения невысоких моделей можно выбрать ванну с меньшей глубиной. В этом случае затраты для первичного наполнения ванны могут быть существенно снижены.
Как уже отмечалось, стереолитография обеспечивает наилучшую чистоту поверхности и наивысшую точность построения моделей. Существенным недостатком технологии является высокая стоимость как покупки, так и владения. Наличие лазера делает SLA-машины относительно дорогими и требует регулярного технического обслуживания. Стоимость расходных материалов находится в пределах 250-300 евро/кг, что сопоставимо со стоимостью модельных материалов других фирм.
Рисунок 22. SLA-машины компании 3D Systems
Стоимость SLA-моделей на аутсорсинге в Европе и России примерно одинаковая, зависит от региона и находится в пределах 1,0-2,0 евро/см 3 . При этом стоимость собственно расходного материала – фотополимера (с учетом дополнительного расхода на поддерживающие структуры) составляет 0,35-0,4 евро/см 3 .
Номенклатура модельных материалов постоянно увеличивается и меняется по качеству. В настоящее время основными материалами являются:
- VisiJet Flex – полипропилен-подобный, эластичный, белый матовый, оптимальный для прототипирования защелок и пр. гибких элементов;
- VisiJet Tough – ABS-подобный, с повышенной ударной прочностью для мастер-моделей, функциональных испытаний;
- VisiJet Clear – поликарбонат-подобный для прототипирования прозрачных изделий;
- VisiJet HiTemp – с повышенной термостойкостью (до 130°C);
- VisiJet e-Stone – для применения в зубопротезировании и т. д.
Таблица 2. Основные параметры SLA-машин компании 3D Systems
Технология DLP. Разработчиком технологии является международная компания Envisiontec, которая свои первые машины выпустила в 2003 году. В машинах Envisiontec семейства Perfactory применяется оригинальная технология DLP – Digital Light Procession, разработанная компанией Texas Instruments ® для получения качественной цифровой проекции. Ключевым элементом проекторов, работающих по DLP-технологии, является цифровое мультизеркальное устройство (Digital Micromirror Device, или DMD) – матрица жестких зеркал из алюминиевого сплава, обладающего высоким коэффициентом отражения (рисунок 23).
Зеркала крепятся к подложке, которая через подвижные пластины соединяется с основанием матрицы. Под противоположными углами зеркал размещены электроды, соединенные с ячейками памяти. Под действием электрического поля подложка с зеркалом принимает одно из двух положений, отличающихся на 20° благодаря ограничителям, расположенным на основании матрицы. Два этих положения соответствуют отражению поступающего светового потока соответственно в объектив и светопоглотитель. Площадь каждого зеркала матрицы составляет 16 мкм и менее, расстояние между зеркалами – около 1 мкм. Изменением соотношения времени, в течение которого зеркало находится в разных положениях, регулируется яркость проецируемого изображения. В настоящее время разрешение DMD соответствует SXGA. Весь DMD-элемент имеет среднее время жизни около 6 лет при работе проектора 10 час/день.
Рисунок 23. DMD – Digital Micromirror Device
При построении модели формируется так называемая «маска» каждого текущего сечения CAD-модели, которая проецируется на рабочую платформу через систему DMD-элементов (зеркал) с помощью прожектора с высокой яркостью света. Причем каждый слой (сечение CADмодели) разбивается не на «плоские» пиксели, а на «объемные» – воксели (voxel) размерами XYZ=16х16х15 мкм. Размер вокселя может регулироваться по XY в диапазоне 16-69 мкм, по Z – 15-150 мкм. Таким образом, процесс построения можно представить как сборку модели из мельчайших строительных блоков. Формирование и засветка видимым светом каждого слоя происходит в течение 3-7 с.
Следовательно, если в SLA-машинах применяется «точечный» принцип засветки, то в машинах Envisiontec – «поверхностный», т. е. осуществляется засветка всей поверхности слоя. Этим объясняется весьма высокая скорость построения моделей – в среднем 25 мм/час по высоте при толщине слоя построения 0,05 мм. Материал поддержек – тот же, что и основной материал – акриловый фотополимер.
Читать статью Обзор: технологии 3D-печати для литья металлов
Модели Envisiontec используют так же, как и SLA-модели, в качестве мастер-моделей и выжигаемых литейных моделей. Качество моделей уступает SLA-моделям только по точности, что связано с применением акриловых фотополимеров, имеющих коэффициент усадки при полимеризации, равный 0,6%, в машинах 3D Systems используют малоусадочные эпоксидные фотополимеры. Модели Envisiontec (рисунок 24) характеризуются достаточно высокой точностью и чистотой поверхности, прочностью и удобством в обращении при весьма умеренной (по сравнению со стереолитографией) стоимости. Преимуществом технологии Envisiontec является высокая скорость построения моделей и, следовательно, производительность AM-машины, хорошая выжигаемость моделей и малая
Рисунок 24. Модели Envisiontec: а – выжигаемая литейная модель; б – функциональная модель
зольность. Технология DLP –весьма перспективна и эффективна для литейного производства. Так, например, время построения с учетом подготовительно-заключительных операций впускной трубы высотой 32 мм и ресивера высотой 100 мм составляет 1,5 и 5 часов, соответственно. На сопоставимой по размерам SLA-машине Viper si2 для построение таких моделей необходимо не менее 5,5 и 16 часов, соответственно.
Компания Envisiontec выпускает несколько видов принтеров, ориентированных на применение в медицине, ювелирном деле. Для целей промышленного литейного производства представляют интерес три модели – Ultra, Xtreme и Xede (рисунок 25). Машина Xtreme имеет один цифровой прожектор с разрешением 1400х1050 пикселей, Xede – два прожектора. Модели требуют пост-обработки – удаления поддержек и в ряде случаев, как и стереолитография – дополимеризации.
Эффективная рабочая зона построения и толщина слоя построения регулируются сменой линз оптической системы. Особенностью машин серий Xtreme и Xede является то, что в отличие от других технологий, здесь используется не дискретное, пошаговое, а непрерывное движение платформы вниз с малой скоростью. Такой способ засветки делает поверхность модели более гладкой, без ярко выраженных ступенек, характерных для других технологий послойного синтеза.
Параметры | Ultra | Xtreme | Xede |
Размеры зоны построения, мм | 266x175x193 | 254x381x330 | 457x457x457 |
Макс. разрешение по XY, мкм | 50-100 | 100 | 100 |
Рисунок 25. АМ-машины компании Envisiontec
Большой выбор материалов для мастер-моделей, выжигаемых моделей и моделей для вакуум-формовки (выдерживающих до 150°С), а также для концептуального моделирования делает эти машины особенно привлекательными в тех случаях, когда требуется изготавливать большое количество и широкую номенклатуру моделей в разнообразном спектре назначения. В США и Европе машины Envisiontec широко используются, в частности, в серийном производстве слуховых аппаратов и в изготовлении приспособлений для коррекции зубов.
MJM-технология. По классификации ASTM, технология MJM – Multi Jet Modeling – относятся к категории Material Jetting (см. Гл. 2). Применительно к литейнум-задачам она используется для получения «восковок» — воскоподобные синтез-модели для последующего литья по выплавляемым моделям. Модели строят на 3D-принтерах с использованием специального модельного материала, в состав которого входит светочувствительная смола – фотополимер на акриловой основе и литейный воск (более 50% по массе). Фотополимер является связующим элементом. Материал многоструйной головкой послойно наносится на поверхность рабочей платформы, отверждение каждого слоя производится за счет облучения ультрафиолетовой лампой.
Принтеры серии (рисунок 26) компании 3D Systems специально разработаны для «выращивания» моделей для точного литья металлов в гипсокерамические и оболочковые формы (рисунок 27, 28).
Модель ProJet 3510 HD имеет два режима построения модели – «стандартный» с разрешением (XYZ) 375x375x790 точек на дюйм (шаг построения 32 мкм) и размерами зоны построения 298x185x203 мм и «высокоточный» UHD – Ultra High Definition с разрешением (XYZ) 750x750x890 точек на дюйм (шаг построения 29 мкм) и размерами зоны построения 127x178x152 мм. Принтер ProJet 3500 HDMax имеет еще большее разрешение (XYZ) 750x750x1600 точек на дюйм (режим XHD – Xtreme High Definition, шаг построения 16 мкм), но на всей зоне построения 298x185x203 мм. Принтер ProJet 3510 HDPlus может работать в режиме XHD на уменьшенной до 127x178x152 мм зоне построения (см. также таблицу 3).
Рисунок 26. MJMмашины компании 3D Systems
Рисунок 27. Литейные модели
Особенностью технологии MJM так же, как и стереолитографии, является наличие поддерживающих структур – поддержек, которые строятся для удержания нависающих элементов модели в процессе построения. В качестве материала для поддержек используется восковой полимер VisiJet® S300 с низкой температурой плавления, который после построения модели удаляется струёй горячей воды. Модельные материалы VisiJet М3 и материал поддержек VisiJet® S300 содержится в виде баллонов-картриджей.
Машина ProJet 5000 ориентирована на изготовление дизайн- и функциональные прототипы, отличается большей зоной построения и большей производительностью. Модельные материалы: VisiJet® M5 Back, VisiJet® M5 MX, VisiJet® M5-X – представляют собой ABS- и PPподобные фотополимерные смолы.
(Предоставлено ФГУП «НАМИ»)
Рисунок 28. Оболочковая форма и чугунная отливка корпуса турбины, полученные по восковой синтез-модели
Таблица 3. MJM-принтеры компании 3D Systems
Принтер ProJet 5000X позволяет производить цветную печать, используя одновременно материалы разного цвета – белый, чёрный, прозрачный и несколько оттенков серого, рисунок 29.
В MJM-принтерах компании 3D Systems точность построения (в зависимости от конфигурации, ориентации и размеров модели) – в пределах 0,025-0,05 мм на длине в один дюйм (25,4 мм). Принтеры позволяют строить модели с толщиной стенок до 1 мм, в отдельных случаях до 0,8 мм. Крупные модели могут быть построены частями и затем склеены.
Рисунок 29. Литейные модели
Недостаток технологии – относительно высокая стоимость расходных материалов – около 400 евро/кг. Преимущество – скорость получения модели и высокое качество модельного материала с точки зрения собственно технологии литья по выплавляемым моделям (формовки, вытапливания модели).
1.3 Технологии и машины для синтеза песчаных литейных форм
Общие сведения о технологиях синтеза песчаных форм
В последние годы динамично развивается направление непосредственного «выращивания» песчаных форм для литья металлов. Для производства песчаных литейных форм используется AM-технологии послойного спекания плакированного песка лазерным лучом (фирма EOS) и послойного нанесения связующего состава, или Ink-Jet-технология (ExOne).
Технология фирмы EOS (Германия) представляет собой разновидность SLS-технологии. Различие состоит в том, что в качестве модельного материала используется литейный (силикатный или циркониевый) предварительно плакированный полимером песок. Плакирование песка производят в специальном смесителе, где песок смешивают с жидким связующим, и таким способом, каждая частичка песка покрывается тонким слоем связующего. При построении модели в АМ-машине тепловое воздействие лазера приводит к расплавлению связующего, и частички песка «склеиваются». После спекания получается «грин-модель», требующая аккуратного обращения при очистке. Для закрепления очищенных мест их сразу обрабатывают вручную пламенем газовой горелки. После завершения очистки фрагменты формы помещают в прокалочную печь и окончательно (при температуре 300-350°С) отверждают массив формы. Затем «выращенные» фрагменты формы собирают и подготавливают к заливке металлом обычными методами.
Технология фирмы ExOne – это технология послойного нанесения связующего состава, или Ink-Jet-технология. Она отличается от MJMтехнологии тем, что на рабочую платформу впрыскивается не строительный материал, а связующий состав, рисунок 30.
Строительный материал (литейный песок) подают и разравнивают на рабочей платформе послойно с шагом 0,2-0,4 мм аналогично SLSсистемам. После завершения построения рабочий бункер извлекают из машины, модели очищают и подготавливают к сборке. В этом случае дополнительной термообработки «выращенных» песчаных моделей не требуется.
Независимо от метода построения собственно формы алгоритм действий конструктора-технолога практически одинаков – последовательность операций выглядит следующим образом (рисунки 31, 32):
- создают CAD-модель изделия, назначают припуск на обрабатываемые поверхности, рисунок 31а;
- согласно рекомендациям технолога, проектируют литниковую систему, которая сочленяется с основной CAD-моделью, модель масштабируют в соответствии с коэффициентом усадки литейного материала, получают технологическую CAD-модель, рисунок 31б;
- создают CAD-модели стержней (рисунки 31в, г) и внешних форм, рисунок 31д.
Рисунок 30. Построение литейной формы: а – многосопловая головка селективно впрыскивает связующее на свежесформированный слой песка; б – связующее нанесено, машина готова к формированию следующего слоя песка
В завершение процесса проектирования создаются stl-файлы литейной формы, расчлененной на фрагменты в соответствии с размерами рабочей камеры AM-машины, рисунок 31е. На этом завершается основной конструкторско-технологический этап.
Следующим этапом является моделирование процесса литья. Современные программные продукты, такие как:
- Magma (Magma GmbH, Германия);
- ProCAST (ESI Group, Франция);
- QuikCAST (ESI Group, Франция);
- СКМ ЛП «ПолигонСофт» (ООО «Полигон», Россия);
- LVMFlow (НПО МКМ, Россия),
позволяют произвести виртуальную заливку металла и рассчитать основные параметры состояния металла как при заливке, так и в процессе кристаллизации и остывания. Такое моделирование позволяет оптимизировать потоки металла в форме, оценить вероятность «замораживания» потока, возникновения газовых пробок, усадочных раковин, внутренних напряжений и т. д. В случае необходимости в конструкцию формы вносят изменения, и процесс повторяют до получения удовлетворительного результата.
Этап расчётного моделирования может быть проведён до проектирования литейной формы и совмещён с процессом создания литниковой системы. После этого в процесс создания отливки подключается AMмашина. Оператор машины формирует задание на построение: располагает фрагменты формы в виртуальном пространстве рабочего бункера; назначает параметры рабочего процесса (шаг построения и пр.) и включает машину в режим работы – начинается послойный синтез.
Рисунок 31. Проектирование литейной формы: а – исходная CAD-модель; б – проектирование литниковой системы; в, г – проектирование стержней; д – проектирование внешних формообразующих; е – литейная форма в сборе
Рисунок 32. Изготовление песчаной формы для литья головки цилиндров ДВС: а – процесс спекания плакированного песка (SLS-технология); б – извлечение фрагментов формы из AM-машины; в – очистка; г, д – фрагменты, очищенные и предварительно обработанные пламенем горелки; е – сборка формы
(Предоставлено ФГУП «НАМИ»)
Рисунок 32. Изготовление песчаной формы для литья головки цилиндров ДВС (продолжение): ж, з – установка формы в опоку и заливка металла; и – выбивка формы, очистка отливки; к – отливка после очистки и обрезки литников
После завершения построения фрагменты песчаной формы с известными предосторожностями извлекают из бункера и очищают (рисунок 32 б, в, г, д), если необходимо, проводят пост-обработку, собирают (6.32 е), стыкуют, герметизируют швы, устанавливают холодильники
и т. д., помещают в опоку (6.32 ж) и заливают металл (6.32 з). После остывания форму разбивают, извлекают отливку (6.32 и) и обрезают литники (6.32 к).
Машины для синтеза песчаных форм
Машины компании ExOne, рисунок 33, 34, ранее производились под брендом «ProMetal», отличаются высокой производительностью и ориентированы для производства не только штучной, но и серийной продукции.
Рисунок 33. Машины ExOne: S-Max и S-Print
Выработка всего объема бункера машины S-Max – около 800 кг, при непрерывной работе машины требуется два дня. Скорость построения моделей – 12-28 мм/ч по высоте, на формирование слоя необходимо около 40 с. Машина может работать с тремя видами связующего: фурановым, фенольным и специально разработанным неорганическим (для «экологически чистого» литейного производства). Машина чувствительна к качеству песка – размер частиц не должен превышать 140 мкм. Производительность машины является существенным преимуществом в условиях промышленного производства. Базовая стоимость машины SMax составляет 1,4 млн. евро.
В упомянутых выше машинах Voxeljet VX200, VX500, VXC800, VX 1000, VX 2000 и VX 4000, см. рисунок 7, модельным материалом для послойного синтеза может быть не только полимерный порошок PMMA, но и литейные пески. Машины Voxeljet работают по такому же принципу, что и машины ExOne.
Рисунок 34. Машина S-Max: а – процесс очистки и извлечения фрагментов песчаных форм; б – песчаные стержни для литья головки цилиндров ДВС; в – синтезированная песчаная форма для литья головки цилиндров двигателя Ferrari
Основным преимуществом машин ExOne и Voxeljet является высокая производительность и возможность построения относительно крупногабаритных форм и стержней (рисунок 35).
В машине EOS S750 (рисунок 36) используется SLS-технология. Возможности машины позволяют строить филигранные фрагменты формы размерами до 1 мм. Рабочая зона построения составляет 720x380x380 мм, шаг построения – 0,2 мм, точность построения – 0,3 мм (на длине 720 мм). Машина отверждает до 2500 см 3 песка в час (S-Max – 7500 см 3 /час). Несмотря на трудоемкость получения моделей и меньшую производительность машины, EOS S750 обладает несомненным преимуществом по точности построения моделей и чистоте поверхности. EOS S750 изготавливает формы и стержни, недоступные по сложности другим технологиям. Эти машины применяются там, где существуют повышенные требования к точности литья и чистоте поверхности отливок (рисунок 36).
Рисунок 35. Синтезированные песчаные формы (ExOne)
Особенностью технологии является то, что для работы машины необходим плакированный песок, который нужно закупать у фирмыизготовителя машины или создать на месте производственные мощности для плакирования песка. Для увеличения скорости работы в машине используется система с двумя лазерами.
Стоимость машины относительно высокая – от 800 тыс. евро. Стоимость содержания (пост-гарантийного обслуживания) также достаточно высокая – стоимость годового сервисного контракта составляет более 30 тыс. евро.
Рисунок 36. Машина EOS S750
Таблица 4. Машины для послойного синтеза песчаных форм и стержней
Фирма | Модель | Зона построения, мм | Шаг построения, мкм | Производительность, см 3 /ч |
ExOne | S-Max | 1800x1000x700 | 280-500 | 60000-85000 |
S-Print | 800x500x400 | 280-500 | 20000-36000 | |
Voxoljet | VX500 | 500x400x300 | 80-150 | 3000 |
VXC800 | 850x500x1500/2000 | 80-200 | 18000 | |
VX 1000 | 1060x600x500 | 100-300 | 23000 | |
VX 2000 | 2060x1060x1000 | 120-400 | 47000 | |
VX EOS 4000 | 4000x2000x1000 | 120-300 | 123000 | |
EOS | EOS S750 | 720x380x380 | 200 | 2500 |
2. Литье полимеров с использованием синтезированных мастермоделей
Изготовление высокоточных мастер-моделей — это наиболее динамично развивающаяся ветвь AM-технологий. Синтезированные из фотополимерных композиций модели используются в качестве мастермоделей для изготовления эластичных (силиконовых) форм, посредством которых затем получают восковые литейные модели (восковки) либо отливки из литейных полимеров, например, полиуретановых смол. Использование силиконовых форм чрезвычайно эффективно при штучном и малосерийном производстве восковок. При этом достигается высокое качество восковок (рисунок 37).
Рисунок 37. Литье в силиконовые формы: а, б – силиконовая форма; в – мастер-модель; г – восковая модель; д – металлическая отливка.
Мастер-модели обычно «выращивают» на SLAили DPLустановках, обеспечивающих наилучшую чистоту поверхности и высокую точность построения модели. Достаточно высокое качество для использования в указанных целях имеют также модели, полученные на 3Dпринтерах типа ProJet (3D Systems) и Objet Eden (Stratasys).
Технологии литья в эластичные формы получили широкое распространение в мировой практике. В качестве материала форм используют различные силиконы (смесь двух исходно-жидких компонентов, А и B, которые при смешении в определённой пропорции полимеризуются и образуют однородную относительно твёрдую массу). Силикон – как материал, обладающий малым коэффициентом усадки и относительно высокой прочностью и стойкостью. Эластичные формы получают путём заливки мастер-моделей силиконом в вакууме. Мастер-модель располагают обычно в деревянной опоке (рисунок 38 б, в), опоку помещают в вакуумную литейную машину, где предварительно в специальной ёмкости производят смешение компонентов A и B, затем силикон выливают в опоку. Вакуум применяют с целью удаления воздуха из жидких компонентов и обеспечения высокого качества формы и отливок. После заливки в течение 20-40 мин силикон полимеризуется.
В комплект поставки оборудования для вакуумного литья, как правило, входит собственно вакуумная машина (одноили двухкамерная) и два термошкафа. Один термошкаф предназначается для хранения расходных материалов при температуре около 35°С. Второй термошкаф, в котором поддерживается температура около 70°С, используется для предварительной термоподготовки силиконовой формы непосредственно перед заливкой. Размеры второго термошкафа должны соответствовать размерам вакуумной камеры машины. После заливки полиуретановой смолы форму возвращают в печь, где происходит полимеризация смолы в оптимальных условиях.
Используя специальные технологические приёмы, форму разрезают на две или несколько частей, в зависимости от конфигурации модели, затем модель извлекают из формы. После этого форму снова собирают и используют для заливки воска – получения «восковок», рисунок 1 г. Обычно стойкость формы – до 100-500 циклов, что достаточно для изготовления отливок опытной серии деталей. Эти технологии весьма эффективны для производства опытно-промышленных партий и малосерийной продукции в авиационной, медицинской и приборостроительной отраслях. Широкий спектр силиконов и полиуретановых смол позволяет изготавливать отливки с ударо- и термостойкими свойствами, различной жёсткости в разнообразной цветовой гамме.
Рисунок 38. Технологический процесс получения металлической отливки методом быстрого прототипирования: а – SLA-мастер-модель; б – мастер-модель окрашена и подготовлена к заливке силиконом; в – заливка силиконом; г – силиконовая форма; д – восковка, полученная заливкой воска в силиконовую форму; е – алюминиевая отливка; ж – увеличенный фрагмент отливки
Современные предприятия, изготавливающие металлические отливки по выплавляемым моделям для целей опытного и мелкосерийного производства, обычно имеют в составе технологического оборудования AM-машину для «выращивания» мастер-моделей и машину для вакуумного литья в силиконовые формы (рисунок 39).
Рисунок 39. Литейные машины SLM Solutions
AM-технологии позволяют получать детали сложной конфигурации, которые в принципе невозможно изготовить традиционными методами, например неразъемные пресс-формы с внутренними каналами охлаждения.
Для литейного производства эти технологии представляют несомненный интерес, в частности для изготовления литейной оснастки – форм, как для получения восковых моделей в серийном производстве или отливок из пластмасс, так и для непосредственного литья металлов (кокили, формообразующие литейной оснастки).
Таким образом, в зависимости от конкретной ситуации одна и та же деталь может быть получена либо методом «выращивания» «восковки» на принтере типа ProJet 3510 HD, рисунок 40 а; либо используя фотополимерную модель по технологии Quick-Cast, рисунок 40 б, либо с использованием «выращенной» мастер-модели и восковки, полученной через силиконовую форму, рисунок 40 в).
Рисунок 40. Методы получения металлической отливки, используя: а –синтезированную восковую модель; б –Quick-cast модель; в – выращенную мастер-модель и восковку, полученную в силиконовой форме
Для эффективного использования аддитивных технологий в литейном деле инженер-технолог, помимо знаний нюансов различных видов АМ-технологий и АМ-машин, должен знать:
- точное число деталей;
- реальные сроки изготовления деталей;
- приоритетные требования (точность, чистота поверхности и т. д.);
- стоимость расходных материалов;
- стоимость обслуживания и амортизации оборудования;
- стоимость труда обслуживающего персонала и других производственных затрат.
Точный учёт всех составляющих технологического процесса, умелое сочетание аддитивных технологий и традиционных методов литья позволяют вывести литейное производство на качественно новый уровень.
3. Оснащение литейного участка для эффективного использования аддитивных технологий
Литейное производство – одна из отраслей промышленности, в которой аддитивные технологии нашли практическое применение в самой ранней стадии своего становления. С середины 90-х годов АМтехнологии стали использоваться в опытном и малосерийном производстве, и к настоящему времени именно эта ниша оказалась наиболее благоприятной для дальнейшего развития АМ-технологий как самих по себе, так и в сочетании с традиционными технологиями литья. Как показал опыт, именно такое сочетание дает максимальный экономический эффект. Использование АМ-технологий позволяет создать очень компактные производственные участки, не требующие больших производственных и вспомогательных площадей, многочисленного персонала. Применение АМ-технологий позволяет минимизировать или вовсе исключить труд модельщика, формовщика в привычном понимании. Ручной труд в значительной степени вытесняется квалифицированным интеллектуальным трудом конструкторов-технологов, операторов 3D-принтеров и ЧПУ-станков, разрабатывающих программные средства для управления оборудованием. За рубежом динамичное развитие получили так называемые сервис-бюро или Центры аддитивных технологий, часть из которых ориентирована на изготовление продукции с активным применением аддитивных технологий (Одним из лучших европейских предприятий такого типа является компания ACTech GmbH). Это не значит, что такой Центр оснащен исключительно АМ-машинами. Это значит, что ключевой технологией, позволяющей достичь конкурентного преимущества, является технология послойного синтеза в том или ином её виде. И, как правило, такие Центры ориентированы на изготовление не просто отливки, а конечной детали с необходимой механо-, термообработкой, окраской и т. д., то есть изделия с максимальной добавленной стоимостью. В таких Центрах аддитивные и традиционные технологии дополняют друг друга и усиливают коммерческий эффект.
В оснащение типичного Центра аддитивных технологий входят следующие основные группы оборудования:
- Аддитивные машины (изготовление литейных и мастер-моделей).
- Формовочное оборудование (изготовление гипсокерамических монолитных и керамических оболочковых форм).
- Термическое оборудование (вытапливание восковых и выжигание полистирольных моделей, прокалка форм, термообработка отливок).
- Литейное оборудование (атмосферное, вакуумное, центробежное и т. д. литьё).
- Контрольно-измерительное оборудование (контроль химического анализа металла, измерение твердости, контроль геометрии моделей и отливок, контроль внутренней структуры отливок, входной и выходной контроль).
- Механообрабатывающее оборудование (финишная обработка).
В структуре Центра должны быть предусмотрены также и традиционные вспомогательные службы: склад для хранения металлов и расходных материалов, участок для очистки и сборки моделей, участок для размывки опок и очистки отливок от формомассы, склад готовой продукции и т. д.
В России большой практический опыт в этой области имеет Центр Быстрого Прототипирования ФГУП «НАМИ» (сейчас – Центр Технологий «НАМИ»), Научно-технический комплекс (НТК) «Цифровые технологии» ОАО «НИАТ», компания АБ Универсал – все Москва, а также предприятия из Санкт-Петербурга — «НИИМаштех», СПбГПУ и ФГУП ЦНИИ КМ «Прометей».
НТК «Цифровые технологии», например, разрабатывает и предлагает производственные комплексы, ключевым звеном которых являются технологии послойного синтеза. Компания проповедует модульный принцип построения комплексов, которые могут быть легко переформатированы под задачи конкретного производства. Комплекс содержит следующие основные модули (рисунки 41-6.45):
- конструкторско-технологический модуль или CAD-модуль — разработка 3D моделей деталей, отливок, оснастки. Компьютерное моделирование процессов литья. Разработка специальной технологии изготовления литых заготовок различных габаритов;
- модуль «Песчаные формы» — прямое изготовление песчаных форм и стержней для гравитационного литья, литья под низким давлением и изготовление форм для точного литья заготовок штамповой и кокильной оснастки, рисунок 41;
- модуль «Силиконовые формы» — создание силиконовых форм для последующего изготовления восковых моделей или литья пластмассовых деталей из полиуретановых композиций, рисунок 42;
- модуль «Выжигаемые модели» — прямое изготовление выжигаемых моделей для точного литья в керамические формы алюминиевых и титановых сплавов, сталей и чугунов, рисунок 43;
- модуль «Синтез» — прямое изготовление прототипов, функциональных металлических деталей, формообразующих частей оснастки селективным лазерным плавлением металлических порошков, рисунок 44;
- модуль «Литье» — литье заготовок деталей из алюминиевых и магниевых сплавов, сталей, чугуна, титана;
- модуль «Контроль геометрии» — бесконтактная оптическая оцифровка, контроль геометрии и реверсивный инжиниринг деталей, заготовок и оснастки, рисунок 45;
- модуль «Неразрушающий контроль» — неразрушающий контроль деталей, литых заготовок и оснастки на основе компьютерной томографии.
Рисунок 41. Модуль «Песчаные формы» на базе АМ-машины S-Max
Читать статью Презентация на тему Основные виды оборудования для литейных цехов
Рисунок 42. Модуль «Силиконовые формы» на базе вакуумной машины System 2 (MK Technology)
Рисунок 43. Модуль «Выжигаемые модели» на базе АМ-машины Voxeljet
Рисунок 44. Модуль «Синтез»
на базе АМ-машин компании Concept Laser
Рисунок 45. Роботизированный модуль «Контроль геометрии» на базе фотограмметрической системы ATOS Triple Scan
Технологический комплекс измерений и инспекционного контроля геометрии на базе системы ATOS Triple Scan позволяет за короткое время с высокой точностью оцифровать объект с поверхностью любой сложности и получить его трёхмерную полигональную модель. При этом решаются задачи, возникающие в производстве и при его подготовке, требующие эффективных измерительных технологий. Состав каждого модуля ПТК сформирован таким образом, что может выполнять свои функции самостоятельно при решении отдельной задачи, а также может интегрироваться с другими модулями и технологиями действующего литейного производства. Такой подход позволяет создавать единое информационное конструктивно-технологическое пространство и реализовать принцип сквозных цифровых технологий.
Для металлургических исследований, дефектоскопии и широкого круга инженерных задач большой интерес представляют системы компьютерной томографии, позволяющие «увидеть» внутреннюю структуру изучаемого объекта (рисунок 46). Компьютерная томография позволяет получать трёхмерное изображение при рентгеновском просвечивании отливок и определять геометрию внутренних поверхностей и каналов, получая объемную картину расположения металлургических дефектов.
Томографы представляют особый интерес для отработки технологии литья ответственных изделий, позволяют оперативно исследовать проблемные места в отливке, объективно оценить степень их значимости, провести вариантные исследования литниковой системы, режимов пред- и пост-обработки отливки и таким методом в сжатые сроки отработать бездефектную технологию получения литых изделий.
Современные компьютерной томографии позволяют идентифицировать объекты (поры, раковины, включения и т. д.) с высоким разрешением, получать по сути трёхмерный скан детали.
По томограмме можно получить наглядное изображение и любого сечения объекта, и трёхмерной модели в целом, которая также может быть сопоставлена с исходной CAD-моделью.
Важным параметром системы является размер пятна фокуса при фокусировании рентгеновских лучей. Чем меньше его размер, тем выше разрешение системы, тем более чёткое и достоверное изображение проецируется на детектор. В современных системах для индустриальных задач размер пятна фокуса составляет 200 и менее нм (0,2 мкм), что позволяет создавать томографы для достаточно габаритных объектов, таких как блоки и головки цилиндров двигателей, корпусные детали энергетических машин и т. д.
Рисунок 46. Инспекционный контроль и анализ качества литейных деталей: CAD-модель, отливка и результаты томографических исследований (с указанием дефектных мест)
Технологический комплекс неразрушающего контроля деталей, литых заготовок и оснастки на основе компьютерной томографии позволяет проводить следующие операции:
- неразрушающий контроль качества отливок;
- анализ дефектов и пористости в отливках;
- определение внутренней геометрии объекта;
- реверсивный инжиниринг.
Ряд компаний, например, YXLON и Werth (Германия) выпускают специальные томографы YXLON.CT Universal и Tomoscope, имеющие в своем составе макро- и микрофокусные трубки, линейный и плоскопанельный детекторы. Микрофокусные трубки открытого типа с мощностью излучателей 10-225 кэВ/0.01-3.0 mA. Макрофокусные трубки 60 — 450 кэВ/2.0-9.0 mA. Масса инспектируемой детали в модели Y.CT Modular (рисунок 47) – до 65 кг, высота – до 650 мм, диаметр – до 635 мм.
Рисунок 47. Томограф Y.CT Modular
Томограф имеет гранитное основание и может быть использован в качестве контрольно-измерительной машины. Разрешение до 1 мкм, точность измерений 10 мкм. Томографы позволяют проводить регистрацию и анализ дефектов и внутренней структуры деталей практически всех конструкционных материалов. Эти машины чрезвычайно удобны и полезны для отработки технологии литья, а также для входного и выходного контроля особо ответственных отливок и металлопорошковых изделий с повышенными требованиями на герметичность и качество внутренней структуры материала.
Известными производителями компьютерных томографов являются также: Nikon (Япония, производство в Бельгии), General Electric (подразделение Phoenix, США), Carl Zeiss, Werth, Matrix Technologies (Германия).
Для лабораторных исследований представляют интерес относительно недорогие (80-120 тыс. евро) томографы CTportable (Fraunhofer EZRT) и томографы серии SHR (Shake GmbH) с трубками 50-160 кэВ. Наиболее популярным программным продуктом для обработки данных томографирования, контрольных измерений и анализа является VGStudui Max 1 компании Volume Graphics.
Похожие записи:
- Зуботехническая лаборатория
- Литейное оборудование для малого бизнеса. Готовый мини-завод – лучшее решение для малого бизнеса. Как можно сэкономить на покупке
- Технологическое оборудование — это что такое?
- Литейная оснастка для литья металлов и сплавов
Модельная оснастка изготовление
Модельной оснасткой — называют разнообразные приспособления и инструменты, используемые для изготовления литейной формы, а в дальнейшем — для изготовления отливки.
ПРЕИМУЩЕСТВА ИСПОЛЬЗОВАНИЯ МОДЕЛЬНОЙ ОСНАСТКИ
- Простота ремонта;
- Защита от износа;
- Устойчивость к внешним воздействиям.
Модельная оснастка — это целый комплекс различных инструментов, применяемых при изготовлении литейной формы, а в дальнейшем для производства отливки. Разработкой проектов и последующим выпуском занимается специализированное модельное производство, где применяются самые современные технологии и материалы. Изначально проект разрабатывается в трехмерном виде с помощью компьютера, чтобы наиболее подробно изучить все части будущей модели. Непосредственно сами модели, а также стержневые ящики, изготавливаются на специальных станках с ЧПУ или посредствам 3D принтера.
Изготавливается оснастка для литья на основе холодно-твердеющих смесей (ХТС), таких как древесноволокнистая, модельная плита и композитные материалы.
Чаще всего выпускается алюминиевая, деревянная, пластиковая или чугунная оснастка.
Ресурс, который может обеспечить модельная оснастка, может варьироваться в пределах от 1000 до 15000 съемов в зависимости от материала оснатки. Самыми прочными материалами являются чугун, сталь и алюминий, после них идет пластмасса, а затем уже дерево и фанера.
Материалы, используемые нами для изготовления модельной оснастки:
- модельный пластик различной твердости;
- стеклопластик (контактная формовка);
- МДФ с последующей пропиткой и обработкой;
- пенополистирол твердых марок;
- заливочные компаунды;
- фанера.
МАТЕРИАЛЫ ДЛЯ МОДЕЛЬНОЙ ОСНАСТКИ
Самый бюджетный и простой вариант — модельная оснастка из МДФ.
После завершения фрезеровки, для придания высокой твердости и повышению водоотталкивающих свойств поверхностному слою модели, ее рабочие поверхности подвергаются пропитке особыми смолами. Оснастка из МДФ подходит для выполнения небольшого числа отливок. Чаще всего этот материал используется при изготовлении оснастки для художественного литья.
Дерево считается классическим, легким и легкообрабатываемым материалом. Поэтому из дерева очень часто изготавливается модельно стержневая оснастка. Для производства модельной оснастки используется исключительно качественная и идеально высушенная древесина, а тонкие художественные детали требуют использования ценных пород твердой древесины. Такие сложности приводят к увеличению стоимости изготовления литейной оснастки из древесины по сравнению с оснасткой из МДФ. Конечно, в некоторых случаях модельная оснастка из древесины просто незаменима. Например, при изготовлении габаритных изделий деревянная оснастка предпочтительней из-за меньшего веса.
Оптимальный вариант для современного производства — изготовление модельной оснастки из пластика. В современной химической промышленности производится огромное количество видов полимеров, которые предназначены для производства литейной оснастки, в форме пасты, заливочного состава или плиты стандартного размера. Подобные материалы очень удобно использовать – они обладают однородной структурой и высокими эксплуатационными характеристиками. Некоторые модельные полиуретаны превосходят по износостойкости алюминиевые сплавы и могут выдерживать более 100 000 съемов. Изготовление литейной оснастки из пластика выгодно для производства крупных серий отливок на предприятиях, обладающих современным формовочным оборудованием.
Металлическая литейная технологическая оснастка является самым надежным и долговечным вариантом, хотя и самым дорогостоящим, так как обрабатывать металл намного тяжелее, нежели пластик либо дерево.
Подобную оснастку практически невозможно повредить.На нашем оборудовании мы можем изготовить оснастку из алюминиевых и других сплавов.
СФЕРЫ ПРИМЕНЕНИЙ МОДЕЛЬНОЙ ОСНАСТКИ
Мы предлагаем изготовление модельной оснастки для различных отраслей промышленности:
- машиностроительное и художественное литье;
- вакуумно-пленочная формовка;
- бетонное производство;
- авиамоделирование;
- судостроение;
- архитектура и дизайн.
Компания ООО «ФормаТех» готова предложить услуги изготовления модельной оснастки по выгодным ценам.
Для определения стоимости и сроков изготовления модельной оснастки, направьте ваш запрос через форму на сайте или на почту: [email protected]
ТРЕБОВАНИЯ К ЗАЯВКЕ (В запрос включите следующую информацию):
- Чертеж или 3D модель
- Материал готового изделия
- Дополнительные сведения
Минимальная стоимость модельной оснастки — от 5000 рублей
Срок изготовления модельной оснастки от 1 рабочего дня
В течение одного рабочего дня с вами свяжется специалист для уточнения деталей, расчета стоимости и сроков выполнения.
Если у вас отсутствует необходимая 3D модель или чертёж, мы поможем Вам их спроектировать и изготовить.
Литейная оснастка для литья металлов и сплавов
Требования к литейной форме Технологии литья Модельная оснастка Литье в песчаные формы Литье в кокиль Литье под давлением Литье по выплавляемым моделям
Литейное производство — одна из отраслей металлургии, специализирующаяся на переработке металлов и их сплавов, в частности, изготовлением деталей различных конфигураций методом заливки расплавленного металла в специальную форму, под принудительным давлением или естественным путем, с последующим охлаждением до застывания в форме нужной отливки — готового изделия или заготовки. В случае необходимости отливка затем подвергается механической обработке, для большей точности размеров либо уменьшения шероховатости поверхности. Таким образом, основная цель литейного производства – изготовление отливок, максимально соответствующих по форме и размерам конечному изделию.
Для получения качественных отливок на производстве используется специальная литейная оснастка — литейные формы, и от качества их исполнения и особенностей конструкции в большой степени зависит не только качество конечного изделия, но и трудозатраты на производство.
На производстве к качественной литейной форме предъявляют ряд требований, основные из них:
- прочность (выдерживать нагрузки)
- податливость (при усадке отливки уменьшаться в объеме)
- газопроницаемость (при эксплуатации в литейной форме образуются газы)
- огнеупорность (не поддаваться воздействию расплавленного металла)
По степени участия непосредственно в процессе литья литейная оснастка подразделяется на формообразующую (основную) и универсальную (вспомогательную). По количеству возможных заливок литейные формы бывают разовые и многократные, также есть подразделение форм по материалу, из которого они изготовлены (песчаные, металлические и т.д.).
- литейные формы из металлов – чугуна и стали – выдерживают большое количество заливок, сотни и тысячи, поэтому относятся к многократным.
- песчаные формы и формы по выплавляемым моделям эксплуатируются с помощью приспособлений – моделей, они являются разовыми, а сам процесс производства таких форм называется «формовка». С помощью модели оформляют внутренние рабочие поверхности в песчаной литейной форме, они заполняются расплавленным металлом и формируют отливку.
Весь комплект приспособлений, необходимых для производства отливок, и представляет из себя литейную оснастку, а часть оснастки, необходимая для формирования рабочей полости в литейной форме при формовке – модельный комплект.
Изделия, полученные на литейном производстве из тугоплавких сплавов, необходимы в таких отраслях, как авиастроение, приборостроение, ракетостроение, судостроение, радиоэлектроника и атомная энергетика, а из коррозионно-стойких и жаропрочных сплавов – в химической промышленности. На сегодняшний день от 50% до 95% деталей промышленного оборудования изготавливается именно методом литья.
В современном литейном производстве широко применяется около пятидесяти технологий литья, наиболее часто используются:
- литье под давлением
- литье в песчаные формы
- литье по выплавляемым моделям
- литье в металлические формы или кокиля
- литье под низким давлением
- литье в оболочковые формы
- центробежное литье и др.
Коллектив Ульяновского Приборо-Ремонтного Завода обладает богатым опытом, позволяющим проектировать и изготавливать литейную оснастку для литья цветных металлов и сплавов, а именно: литья в кокиль, литья в песчаные формы (в землю), литья под давлением, а также осуществлять полный цикл изготовления пресс-форм для литья по выплавляемым моделям.
Модельные комплекты (оснастка) — литье в песчаные формы
Модельным комплектом называется технологическая оснастка, в том числе приспособления, которые формируют рабочую полость литейной формы; она включает в себя модели литниковой системы, модельные плиты, стержневые ящики, шаблоны сборочные и контрольные, а также литейную модель – приспособление, при помощи которого в литейной форме получается отпечаток, размерами и конфигурацией соответствующий необходимой отливке.
При изготовлении модели обязательно предусматривают припуски на механическую обработку готовой отливки, эти припуски закладываются при проектировании в чертеже отливки. Также размеры модели должны превышать размеры отливки на размер литейной усадки используемого при литье сплава. Эти и многие другие технологические особенности должны быть учтены специалистами при проектировании.
Литейные модели бывают разъемные и неразъемные, состоящие из двух или нескольких частей. По материалу изготовления модели бывают, в основном, пластмассовые, металлические и деревянные, так как модель должна быть одновременно прочной и жесткой, но легкой. Деревянные модели, с целью избежания коробления, изготавливают из отдельных склеенных брусочков, при этом важно разное направление волокон дерева.
Модели из дерева имеют свои преимущества – простота изготовления, умеренная стоимость, небольшой вес, и недостатки – малый срок службы, коробление, гигроскопичность, неоднородность структуры. Модели из металла используются при производстве отливок в больших количествах, в массовом производстве. Такие модели более долговечны, имеют более точную рабочую поверхность, однако они подвержены окислению и имеют очень большую массу. В зависимости от специфики работы такой оснастки и требований к условиям ее эксплуатации модели изготавливают из различных сплавов – на основе алюминия, стали, бронзы, латуни и чугуна. Пластмассовые модели сочетают в себе достоинства металлических и деревянных моделей, так как обладают небольшой массой, хорошей точностью, прочные, не поддаются короблению, устойчивы к воздействию влаги. Как правило, изготавливаются пластмассовые модели из составов на основе формальдегидных и эпоксидных смол.
В последнее время литье в песчаные формы применяется на производстве редко, большей частью, на крупных заводах авиационного, машиностроительного и автомобилестроительного производства. Как следствие, конструкторов и технологов, специализирующихся по этому виду литья, немного. В коллективе нашего предприятия имеются специалисты, обладающие опытом работы в этой достаточно сложной сфере.
Основную сложность составляет наличие большого количества стержневых ящиков, отъемных частей, а также необходимость создания двухсторонних моделей. Мы можем изготавливать металломодельную оснастку из алюминия и из стали. На такой оснастке можно лить цветные и черные металлы и сплавы, а также чугун.
Литье под давлением цветных металлов и сплавов
В последнее время такой вид литья получил большое распространение. Отливки, получаемые в процессе литья под давлением, применяются в производстве мебели, бытовой техники, в автомобилестроении и многих других видах производства. Такие изделия очень прочные, герметичные и имеют хороший товарный вид. Оснастка для литья под давлением металлов и сплавов рассчитана на сотни тысяч, даже миллионы циклов литья, однако достаточно сложная для изготовления и дорогостоящая.
Для эксплуатации оснастки такого вида существует много разновидностей машин литья под давлением, модельный ряд постоянно обновляется. Они подразделяются на машины литья с горизонтальной камерой прессования и с вертикальной камерой прессования. Каждый из этих видов имеет свой ряд по габаритам, мощности, особенностям конструкции и производителям.
Наше предприятие успешно выполняло проектирование, изготовление и запуск в производство пресс-форм для пластмасс и металлического литья изделий, используемых в машиностроении, а также для производства продукции бытового назначения.
Пресс-формы для литья цветных металлов и сплавов под давлением могут быть разной степени сложности: с ползунами, с гидроцилиндрами, с наклонными толкателями, с вкладышами, одногнездные, многогнездные, с многими плоскостями разъема и т.д.. Для изготовления оснастки любой сложности у нас есть необходимый опыт и оборудование. В большинстве случаев имеем возможности и для эксплуатации этой оснастки на собственном оборудовании.
Литье по выплавляемым моделям
Литье по выплавляемым моделям чаще всего применяется для получения тонкостенных отливок сложной конфигурации, как в машиностроении, так и в художественной промышленности. Это один из самых древних способов литья скульптур, колоколов, пушек. Характерная особенность данного вида литья – каждая модель может быть использована для получения только одной отливки, так как в процессе изготовления формы вытапливается, а сама формовочная смесь состоит не из однородного расплавленного металла, а из огнеупорного мелкозернистого, пылевидного материала в связующем растворе. Именно такой состав смеси способствует получению отливок с высоким качеством поверхности. Точность самого отпечатка модели обеспечивается с помощью увеличенной температуры металла, поэтому формовочные и связующие материалы должны обладать высокой огнеупорностью. Недостаток такого метода – сложный и длительный процесс изготовления отливок, для которого необходима специально изготовленная дорогостоящая оснастка и грамотные высококвалифицированные специалисты.
Такой вид литья используется для литья черных и цветных металлов и сплавов. Конструкция пресс-форм очень разнообразна и зависит от планируемой потенциальной производительности и оборудования, на котором оснастка будет эксплуатироваться.
В машиностроении восковые модели отливок изготавливаются в гипсовых, пластмассовых и металлических формах; сам технологический процесс, как правило, механизирован и автоматизирован. Методом литья по выплавляемым моделям производятся детали для авиационной, приборостроительной, машиностроительной и некоторых других отраслей промышленности, где применяются технологии литья труднообрабатываемых сплавов, жаропрочных и коррозионно-стойких.
Оснастка для литья по выплавляемым моделям бывает механизированной (конструкции аналогичны пресс-формам для литья под давлением) и ручной разборки (конструктивно более разнообразны и производят отливки более сложной геометрии). Если от изделия требуется высокая степень точности, прочности и герметичности, то алюминиевые отливки такого вида литья предпочтительнее, чем отливки литья под давлением. При литье по выплавляемым моделям из черных металлов изделия получаются более точными и красивыми, чем отливки в песчаные формы. Наше предприятие может выполнить любой заказ по проектированию и изготовлению оснастки для литья по выплавляемым моделям, в тои числе с привязкой к оборудованию заказчика.
Производство пластиковой модельной оснастки для литья с помощью 3D-печати — экономически эффективный процесс. Напечатанные модели можно применять для формовки по технологиям ХТС, альфа-сет-процесс, а так же как выжигаемые модели.
Преимущества пластиковой модельной оснастки
Удобство использования, транспортировки и хранения
Напечатанные модели, имеют внутри сотовую структуру, за счет чего они легче чем деревянные в несколько раз. Это упрощает все процедуры по обработке и перемещению моделей.
При хранении пластик не изменяет своих размеров от влажности и температуры в отличие от дерева, которое коробится и меняет размеры в больших пределах.
Высокая точность и скорость изготовления моделей
По сравнению с ручным изготовлением, 3D-печать позволяет добиться меньших отклонений в размерах, особенно на сложной геометрии. Так же, сложные модели вручную изготавливаются намного дольше: например, 1 месяц вручную против 48 часов печати.
Уменьшение себестоимости литья
За счет большей точности, 3D-печать позволяет уменьшить припуски под мех обработку, что выливается в экономию при литье.
Повышение эффективности производства, снижение издержек
Следует учитывать, что внутри модель получается с сотовым заполнением, прочность получается, в основном, за счет внешней стенки. Толщина стенки достаточная для большинства изделий — 2,0-3,5 мм.
Внутренняя структура изделия при печати позволяет снизить расход материала при сохранении высокой прочности, необходимой для формовки
Описание этапов изготовления оснастки методом 3D печати
- Экспорт 3D-модели изделия из программы трехмерного моделирования Для 3D-печати необходимо иметь файл 3D-модели в формате STL. Все программные пакеты, используемые для проектирования обьемных моделей, поддерживают сохранение в этот формат.
- Преобразование 3D-модели в G-code и загрузка на 3D-принтер 3D-модель разбивается на слои с преобразованием в управляющий код для принтера. Это выполняется автоматически в специальном ПО для компьютера, идущем в комплекте.
Процесс аналогичен написанию программ для ЧПУ станков, но не требует специальных навыков и сводится к нажатию одной кнопки.
Пользователю нужно лишь указать некоторые параметры, влияющие на компромисс между скоростью печати, качеством и прочностью изделия. - 3D-Печать. Для запуска печати необходимо загрузить файл g-code на 3D-принтер по локальной сети через Wi-Fi или Ethernet.
Печать длится от нескольких минут до нескольких суток, в зависимости от обьема модели.
Управление станком осуществляется через локальную сеть с любого компьютера, планшета или смартфона. Присутствует разграничение прав доступа для по паролю.
Встроенная камера позволяет контролировать процесс из любой точки мира. - Механическая постобработка и покрасочные работы. После окончания печати модель имеет неровности, обусловленные послойной наплавкой пластика.
1. Начальный этап постобработки модели — устранение грубых неровностей (если таковые имеются из-за геометрии 3d-модели), а так же выламываемого материала, строящегося под свисающими частями.
Допустимо использовать любые низкооборотистые шлифмашины. При шлифовке самого пластика машинами на высоких оборотах он будет плавиться, что нежелательно.
2. Склейка модели, если она была напечатана по частям, производится клеями для пластика. Мы применяем эпоксидный клей ЭДП. Если текучесть мешает процессу склейки, то используем Поксипол.
3. Далее следует покрытие всей поверхности жидкой шпаклевкой (двухкомпонентной), для заполнения впадин и слоистости изделия. Желательно выполнять краскопультом.
4. Шлифовка. Выполняется как орбитальными шлиф машинами, так и вручную. Цель — выравнивание нанесенного ранее слоя. Необходимо постепенно снижать размер зерна на наждачной бумаге, доводя до пригодного к покраске.
5. Покраска. Рекомендуется предварительная грунтовка акриловым грунтом. Краска — автомобильная акриловая эмаль. Но можно использовать более дешевые краски.Перед нанесением каждого покрытия поверхность необходимо обезжиривать с помощью спец составов либо растворителя 646. Использование ацетона не допускается.
Используемый пластик PLA не обладает химической стойкостью, но при проведении окрасочных работ не разрушается и обеспечивает хорошую адгезию.
В случае, если печать была выполнена с наилучшим качеством (в настройках ПО), то поверхность получается очень гладкой, что дает возможность обойтись без этапа обработки поверхности жидкой шпаклевкой.
Таким образом существенно ускоряется постобработка. Однако, это приводит к большему времени печати.
Изготовление выжигаемых литейных моделей на 3д принтере
Литье по выжигаемым моделям — одна из технологий точного литья. Технология применяется при изготовлении ответственных деталей в таких отраслях промышленности как авиакосмическая, судостроительная, оборонная и других. Использование 3D печати может существенно оптимизировать процессы получения точных отливок.
Напечатанная на 3д принтере модель для литья по выжигаемым моделям. Материал: Filamentarno Wax3D. Источник: filamentarno
Технологический процесс литья по выжигаемым моделям похож на технологию литья, в которой используется выплавление восковой модели. Но в случае применения 3д печати используется не воск, а специальный полимер, либо пластик.
На сегодняшний день в нашем распоряжении находятся 2 материала, которые могут быть использованы для печати выжигаемых моделей: распространенный пластик PLA и материал WAX3D компании Filamentarno. Оба материала обладают очень низкой зольностью и уже успешно применяются данного вида литья
В случае печати модели из пластика PLA — модель можно только выжигать. А в случае применения материала WAX3D — можно выплавлять как обычный воск, т.к. этот материал был специально разработан для 3D печати выплавляемых моделей.
Применение этого современного материала позволяет использовать напечатанные на 3D-принтере восковки для выжигания без изменения технологического процесса, что особенно важно на крупных предприятиях.
Оборудование для литья по выплавляемым моделям
Литье по выплавляемым моделям — это способ получения фасонных отливок из металлических сплавов в неразъемной, горячей и негазотворной оболочковой форме, рабочая полость которой образована удалением литейной модели выжиганием, выплавлением или растворением При этом способе литья в пресс-формы (обычно металлические) запрессовывают легкоплавкий модельный состав (парафин, стеарин, церезин, буроугольный воск, торфяной битум, канифоль, полистирол, полиэтилен, этил-целлюлозу, жирные кислоты, озокерит и др.), который после затвердевания образует модели деталей и литниковой системы.
На рис. 1 приведен один из типовых процессов изготовления отливок (рис. 1, а) . Пресс-форму изготовляют металлической или пластмассовой, разъемной, состоящей из двух частей (рис. 1, б) . В пресс-форме выполняют каналы для литниковой системы. Расплавленный легкоплавкий сплав заливают под небольшим давлением в пресс-форму (рис. 1, в). При этом получают легкоплавкую модель точных размеров. После затвердевания модель (рис. 1, г) вынимают из пресс-формы, собирают в блоки с общей литниковой системой (рис. 1, д) и погружают в огнеупорную суспензию, состоящую из пылевидного кварца, циркона, корунда (70 %) и связующего (обладает большой клейкостью) — коллоидного раствора диоксида кремния (30 %). Затем блок моделей посыпают сухим песком и сушат на воздухе Повторяя эти операции несколько раз, получают форму толщиной 5 . . . 8 мм (рис. 1, е) .
Модели выплавляются из формы с помощью горячего воздуха (120. . .150 °С), пара или горячей воды. Для крупных отливок облицованную и просушенную форму с литниковой системой помещают в металлический жакет и засыпают песком или металлической дробью (рис. 1, ж), хотя можно заливать металл в формы и без опорного наполнителя.
Рис. 1. Последовательность изготовления отливок литьем по выплавляемым моделям: а — будущая отливка; б — пресс-форма; в — пресс-форма, заполненная легкоплавким сплавом; г — легкоплавкая модель; д — легкоплавкие модели с литниковой системой; е — легкоплавкие модели, покрытые слоем огнеупорного материала; ж — заформованные модели; з — модели, залитые металлом
Готовую форму прокаливают до температуры 850. . .900 °С, при этом остатки легкоплавкого состава выгорают. Форма превращается в прочную керамическую оболочку. Форму заливают расплавленным сплавом (рис. 1, з) . При необходимости сплав подают в форму под действием центробежных сил.
После затвердевания металла блоки отливок выбивают из опок, отбивают керамическую корку, а из отверстий и внутренних каналов корку выщелачивают при температуре 120. . .140 °С в растворе едкого калия. Потом отливки промывают в горячей воде и после контроля отрезают литники и зачищают их остатки.
Рис. 2. Образцы сложных деталей, полученных литьем по выплавляемым моделям
Способ обеспечивает получение сложных по форме отливок массой от 2 г до 300 кг (рис. 2) со стенками толщиной от 0,3 мм из стали и жаропрочных сплавов, которые трудно обрабатывать механическим способом, с шероховатостью поверхности Ra = 6,3 . . .1,6 мкм и точностью размеров до 11-го квалитета. Размеры отливок максимально приближены к размерам готовой детали, вследствие чего за счет сокращения механической обработки снижается стоимость готового изделия.
Методом литья по выплавляемым моделям изготавливают, наряду с заготовками и деталями машиностроения, также художественные отливки, ювелирные изделия, зубные протезы и другие изделия. Этот метод можно использовать в условиях единичного (рис. 3), серийного и массового производства. Литье по выплавляемым моделям является усовершенствованным способом, применявшимся в древние времена для литья художественных и ювелирных изделий по восковым моделям.
Виды оборудования для литья по выплавляемым моделям. Оборудование выбирается в зависимости от типа производства. Последовательное выполнение работ по автоматизации операций позволило создать комплекс машин для приготовления модельной пасты и изготовления моделей без применения ручного труда.
Рис. 3. Схема изготовления моделей с помощью ручного шприца в единичном производстве: а — заполнение шприца всасыванием модельного состава; б — заполнение шприца накладыванием модельного состава; в — запрессовка модельного состава в пресс-форму.
В этом комплексе автоматизированы операции расплавления, фильтрации и отстоя жидкого модельного состава; выравнивания температуры и подачи состава к мазеприготовительному агрегату; охлаждения модельного состава, насыщения его воздухом и превращения в пасту; подачи модельной пасты под давлением к шприцу автомата для изготовления моделей; поддержания постоянной температуры модельной пасты, подаваемой к шприцу; запрессовки модельного состава в пресс-форму; охлаждения моделей в пресс- форме; очистки и смазывания пресс-форм; удаления питателя; транспортирования пресс-форм и удаления моделей; поддержания постоянной температуры модельного состава во всех емкостях, трубопроводах и механизмах; контроля расхода охлаждающей мешалку воды, давления пара и сжатого воздуха.
Рассмотрим некоторое оборудование по этапам технологического процесса.
1. Машины для приготовления модельного состава
В начале технологической цепочки приготавливается модельный состав Для этого применяется автомат 61701, состоящий из устройств подачи твердых и жидких компонентов смеси, дозаторов, емкостей и смесителей. Легкоплавкие модельные составы приготовляют расплавлением составляющих на водяных или масляных банях с электрическим обогревом.
В модельный состав замешивается воздух в количестве 8 . . .12 % от объема Для этого используют шестеренные, поршневые и лопастные смесители.
Рис. 4. Схема шестеренного смесителя для приготовления пастообразного модельного состава с воздухом: 1 — валы; 2 — колеса; 3 — перегородки; 4 — выпускное отверстие; 5 — привод смесителя
Шестеренные смесители непрерывного действия (рис. 4) имеют два вала 1, на которых смонтированы зубчатые колеса 2 . Каждая пара колес отделена от соседней перегородкой 3 . В каждой паре одно из колес свободно насажено на вал, а второе закреплено на валу на шпонке, в соседней паре — наоборот. Валы вращаются от общего привода 5 в одном направлении. Поэтому на одном валу четные, а на другом нечетные зубчатые колеса вращаются вместе с валом, приводя свободно насаженные парные колеса в движение. Смежные пары колес вращаются в разные стороны. Ширина каждой пары уменьшается в направлении движения модельного состава для создания напора и перемещения пасты. Жидкий модельный состав подается в горловину смесителя вместе с воздухом и после перемешивания первой парой колес выдавливается через отверстие 4 в перегородке 3 в соседнюю секцию, где перемешивается в обратном направлении и перемещается вверх, к отверстию 4 в следующей перегородке. В процессе перемешивания модельный состав интенсивно охлаждается, переходя в пастообразное состояние
2. Машины для заполнения пресс-форм модельным составом
На следующем этапе основным оборудованием являются машины для заполнения пресс-форм модельным составом. Основным способом является запрессовка пасты в рабочую полость пресс-форм, что обеспечивает точность модели и низкую шероховатость ее поверхностей. Пасту готовят на установках, аналогичных показанной на рис. 4 . При большой серийности модели с питателями для отливок изготавливаются на десятипозиционном карусельном автомате 61201 (рис. 5) с производительностью 400 запрессовок в час или на однопозиционном автомате 61101 производительностью 63 запрессовки в час.
Рис. 5. Карусельный десятипозиционный автомат модели 61201А для изготовления модельных звеньев в механизированных пресс-формах
После затвердевания модельного состава пресс-форма автоматически раскрывается, модель выталкивается в ванну с холодной водой, откуда по водяному конвейеру направляется на участок сборки моделей. Модели хранят либо в холодной проточной воде, либо в термостатах Одновременно с изготовлением модели отливки изготавливают модели элементов литниковой системы: стояка и воронки.
В единичном, мелкосерийном и серийном производстве модели изготовляют в неавтоматизированных пресс-формах на установке 6А54 — пресс-формы заполняются шприц-машиной (рис. 6) или ручным шприцем, после чего ставятся на десятипозиционный карусельный стол.
Шприц-машины для изготовления восковых моделей бывают С-образной конструкции и с четырьмя направляющими.
Рис. 6. Шприц-машина с четырьмя направляющими
Они производятся с усилиями смыкания пресса от 150 до 1000 кН с рабочим пространством под пресс-форму стороной от 360 до 1020 мм.
Управление процессом запрессовки модельной массы осуществляется системой управления на базе программируемого логического контроллера (ПЛК) и может быть выполнено в трех вариантах в зависимости от степени сложности системы управления и особенностей производства и поставленных задач:
- Стандартная система управления, где ПЛК управляет только режимом впрыска модельной массы и ее температурой посредством последовательного срабатывания различных систем шприц- машины. С этой системой управления впрыск модельной массы происходит только с одной скоростью Переналадка на каждую новую пресс-форму выполняется вручную.
- Упрощенная электронная система управления. В этом варианте система управления оснащается черно-белым сенсорным экраном интерфейса оператора для управления машиной и обеспечивает одноступенчатое управление давлением, скоростью и ускорением потока при запрессовке Переналадка при смене детали происходит автоматически вызовом соответствующей программы.
- Полностью электронная система управления. Наиболее полная версия системы управления шприц-машиной предназначена для изготовления сложных моделей с разной толщиной сечений и/или керамическими стержнями (например, моделей турбинных лопаток). В этом варианте система управления комплектуется цветным сенсорным экраном интерфейса оператора и обеспечивает многоступенчатое управление давлением, скоростью и ускорением потока массы для предотвращения поломки хрупких керамических стержней во время запрессовки массы. Система обеспечивает графическое отображение на экране давления и скорости потока модельной массы, хранение до 4000 программ, выполнение самодиагностики системы и вывод сообщений о неисправностях для облегчения обслуживания.
3. Оборудование для подготовки оболочек и осуществления литья
Следующий этап технологического процесса реализуется с помощью оборудования для сборки моделей в гирлянды. Скрепление может выполняться в кондукторе, механическим способом, спаиванием. Во многих случаях сборка выполняется вручную.
Для приготовления огнеупорного покрытия литейной формы применяют установку 63431 или агрегат 662А, который непрерывно готовит суспензию из пылевидного кварца, этилсиликата, воды и ацетона. Выпускается также агрегат 63501 для хранения и транспортировки огнеупорного покрытия.
Читать статью ГОСТ 12.2.046.0-2004 Оборудование технологическое для литейного производства. Требования безопасности
Нанесение огнеупорного покрытия (рис. 7) на модельные блоки осуществляется в автоматах 64105 и 64106 погружением блоков в емкость с клейким составом, а затем — в псевдокипящий слой песка (через слой песка снизу пропускается сжатый воздух; песчинки разделены воздухом, и блоки погружаются в песок без значительного сопротивления; размер зерен 0,25 мм, а для первого слоя — до 0,16 мм) или в автоматах 64104 и 64107 — пескосыпами.
Рис. 7. Модельные блоки с нанесенным на них огнеупорным покрытием
Сушка слоев (их бывает от 2 до 7; создают стенку толщиной более чем 8 мм) огнеупорного покрытия производится в установке непрерывного действия 6А84 на подвесном конвейере или в установке периодического действия 683 воздействием теплого воздуха, потом в среде, насыщенной аммиаком. На третьей стадии выветривается форма. Затем надо удалить модель из оболочки. Выплавление модельного состава произвотся горячей водой в ванне, а в крупносейном и массовом производстве — на установке 64511 или паром в бойлерклаве модели 64501 или аналогичном (рис. 8). Применение бойлерклава требует выполнения ручных операций. Поэтому его следует использовать лишь там, где из-за больших потерь форм или модельного состава другие способы неприемлемы.
Рис. 8. Бойлерклав для выплавления модельного состава
В бойлерклаве за счет быстрого набора (в течение 3 . . . 4 с) в рабочей камере температуры и давления пара до 0,6 МПа расплавление воска в первую очередь происходит по границе раздела «воск — керамика», прежде чем начнется объемное расширение модельной массы в форме. Благодаря этому сводится к минимуму растрескивание керамических форм. Вторым фактором, снижающим вероятность растрескивания керамических оболочковых форм в результате объемного расширения модельной массы, является то, что высокое рабочее давление пара в камере сжимает керамическую форму снаружи, противодействуя ее растяжению из-за объемного расширения модельной массы.
Керамические формы прокаливают для удаления из них влаги и остатков модельного состава, наличие которых привело бы к браку Для этой цели применяются печи: электрическая 66103 или газовая 66102.
Заформовка керамических форм в ящики с дробью или песком производится на формовочном столе 66231. В крупносерийном и массовом производстве для формовки, прокаливания, заливки блоков и охлаждения отливок применяются линии 66001 и 66002 (рис. 9).
Рис. 9. Агрегат для прокаливания, формовки, заливки металлом, выбивки и охлаждения отливок: 1 — печь с газовым подогревом; 2 — форсунки для подачи сжатого воздуха в «кипящий» слой песка; 3 — заливочная карусель; 4, 5 — вытяжная вентиляция; 6 — ограждение; 7 — подвесной конвейер.
Заливка форм расплавленным металлом выполняется как обычно. Выбивка отливок из ящиков с дробью производится на установке 66232 или подобной. Отделение керамики от отливок производится пневматическим вибратором на установке 67101 или др. Применяется также дробометная очистка.
Рис. 10. Автоклав производства компании LBBC Technologies (Великобритания) для удаления керамических стержней
Остатки керамического покрытия из труднодоступных мест отливки удаляют выщелачиванием (промыванием отливок в теплом растворе щелочи) в установках 6Б95 и 67 501. Для этого применяются и автоклавы, аналогичные показанному на рис. 10. Обрубка, очистка, контроль и исправление дефектов производятся обычными методами
Точное литьё по выплавляемым моделям ювелирам
Технология точного литья по выплавляемым моделям представлена наиболее широко распространённой методикой производства ювелирных (золотых) украшений. Ежегодно посредством технологии — точное литьё по выплавляемым моделям, обрабатываются значительные объёмы сплавов каратного золота. Важным фактором в этом деле являются машины литья ювелирных изделий, соответствующие стандартам эффективности и качества для крупномасштабного производственного оборудования.
- 1 Краткие исторические сведения по технологии
- 2 Точное литьё по выплавляемым моделям — основной процесс
- 3 Машины под точное литьё по выплавляемым моделям
- 3.1 Тип #1: Центробежные литейные машины
- 3.2 Тип #2: Факельные плавильные машины
- 3.3 Тип #3: Плавильные машины сопротивления
- 3.3.1 Техника плавления сопротивлением
- 3.3.2 Система плавления сопротивлением
- 3.4.1 Использование керамических тиглей
- 3.4.2 Момент сброса и центростремительная сила
- 3.4.3 Механически обработанный графит
- 3.5.1 Принципиальные отличия конструкций
- 3.5.2 Особенности проведения плавки металла
- 3.5.3 Эффективность литья тонких профилей
Краткие исторические сведения по технологии
Историческая практика мира отмечалась широким использованием связанного процесса — точного литья по восковым моделям. Современная техника точного литья по выплавляемым моделям применялась в промышленности относительно короткий период времени.
Так, использование процесса точного литья по восковым моделям в области зубного протезирования 1907 года достаточно долго не касалось других применений.
Только в конце 1930-х годов производители ювелирных изделий освоили процесс точного литья по выплавляемым моделям. А для накопления технологического опыта потребовалось ещё несколько десятилетий.
Нужно отметить: процесс, используемый теперь в ювелирном производстве, в малой степени обязан инженерному точному литью по выплавляемым моделям. Технологии, используемые в этих двух областях, развивались практически независимо. В настоящее время ювелирное литьё переживает эпоху значительных изменений.
Представляется вероятным, что период последних нескольких десятков лет эмпирической разработки материалов и оборудования подходит к концу. Ожидается, что процесс будет развиваться на лучшей технической основе, чем это имело место до некоторых времён.
Точное литьё по выплавляемым моделям — основной процесс
Отправной точкой для изготовления ювелирного литья выступает мастер-модель детали, обычно изготовленная из металла с высочайшим стандартом детализации и отделки. Исходя из мастер-модели, производится негативная форма для изготовления расходных штампов.
Для этого традиционной процедурой видится вулканизация сплошного спрессованного крепа вокруг мастер-модели. Здесь применяется нагрев и давление с последующим разделением матрицы и удалением путём резки хирургическим скальпелем.
Двухкомпонентные штампы (матрицы), сделанные таким путём, позволяют воспроизводить сложные конструкции с пустотами, путём впрыскивания расплавленного воска под низким давлением. При этом упругий креп допускает удаление моделей без каких-либо искажений.
Другими рабочими материалами матричной модели являются:
- литые эластомеры,
- литые эпоксидные смолы,
- легкоплавкие сплавы.
Жёсткие или металлические матрицы допустимо использовать при более высоких давлениях ввода воска, чем это допускают пластичные материалы. Так получают точные мельчайшие детали.
Если же требуются значительные производственные циклы, образцы готовят в металлических штампах путём литья пластмасс под давлением. Восковые модели устанавливаются в большом или малом количестве в зависимости от требований производства и мощности литейной машины.
Для настройки используются различные методы. Однако наиболее распространённым для массового производства считается радиальное прикрепление моделей с помощью коротких литников к тяжёлому центральному фидеру.
После настройки (образцы) шаблоны помещаются в форму и включаются во вложение. Почти все вложения для ювелирных изделий основаны на комбинациях гипса и кремнезёма, которые смешиваются с жидкими суспензиями, с водой и составляются таким образом, чтобы схватываться примерно через 10 минут после начала смешивания.
Твёрдые блочные формы являются общим правилом. Многократные процедуры вложения с внутренними и вспомогательными вложениями не используются в практике литья ювелирных изделий.
Большинство литейных форм изготавливаются в цилиндрических жаропрочных металлических контейнерах. Воздух, захваченный на поверхности образцов, удаляется до начала схватывания, благодаря чему пресс-форма остаётся под вакуумом, достаточным для вскипания воды в смеси.
Набор форм депарафинизируют при низкотемпературном нагреве, либо на воздухе, либо на пару, после чего обжигают до температуры от 700 до 800°C, чтобы вулканизировать вложение и сжечь остатки углерода.
Перед литьём ювелирные формы обычно охлаждают до температуры 300-700°C в зависимости от температуры литья используемого сплава и характера образцов в форме.
Машины под точное литьё по выплавляемым моделям
Вкладываемые формы ювелирного типа не поддерживают простую гравитационную укладку.
- Комбинация закрытых моделей с огнеупором с низкой проницаемостью,
- Воспроизводство мелких деталей и деликатных участков.
- Относительно небольшие размеры расплавов.
- Низкий гидростатический напор.
- Низкое термическое содержание металла.
Все указанные моменты исключают возможность простой гравитационной укладки.
Следовательно, точное литьё металла в шаблон почти всегда выполняется в какой-либо форме литейной машины. Основная функция литейной машины — применение давления к расплавленному металлу с целью полного проникновения в форму с последующим заполнением.
Давление может также использоваться для осуществления переноса расплавленного металла в кристаллизатор из тигля, если такой компонент является частью машины для отливки.
Центробежная сила, давление или вакуум, или комбинация таких состояний, используются для выполнения отмеченных выше двух функций. Машины для литья также могут оснащаться средствами для плавления металла, тигля или топки, где металл расплавляется внешней горелкой.
На более сложных машинах предусмотрены вспомогательные функции:
- индикация и регулирование температуры расплава,
- регулирование атмосферы,
- регулирование давления разливки.
Рассмотрим существующие типы машин для отливки золотом и другими металлами, которые активно применяются ювелирными мастерами.
Тип #1: Центробежные литейные машины
Центробежные машины для литья ювелирных изделий, по сути, достаточно сложно поддаются характеристике центробежных систем. Здесь форма не вращается вокруг своей оси, а установлена на одном конце уравновешенного рычага, вращение которого создаёт необходимое давление для выталкивания металла в форму. Такие литейные машины изначально оснащались пружинным приводом.
Современные конструкции центробежных машин для литья почти всегда приводятся в движение на скоростях до 300 об/мин. Более совершенные аппараты имеют регуляторы скорости вращения (крутящего момента).
Вращение механическим приводом обеспечивает постоянную скорость и гарантирует, что центростремительное усилие продолжится до момента, пока металл не затвердеет.
Кроме того, исключается возможность обратного хода. В отличие от машин для литья с пружинным приводом, низкая скорость взлёта может сопровождаться увеличением скорости.
Так уменьшается вероятность турбулентности и обеспечивается максимальное уплотнение металла внутри формы. Пружинное вращение, в любом случае, нецелесообразно для машин под литьё большой емкости, которые способны отливать до 7 кг 18-каратного золотого сплава.
- Горелка.
- Электрическое сопротивление.
- Высокочастотная индукционная плавка.
Все эти конструктивные вариации используется на машинах центробежного литья. Существует несколько машин большой ёмкости, где металл плавится в обычном тигле в отдельной печи.
Причём тигель с расплавленным зарядом передаётся в несущую подставку на машине непосредственно перед выпуском литейного рычага. Однако прямое плавление на машине является наиболее распространённой практикой.
Тип #2: Факельные плавильные машины
Плавление горелкой осуществляется в плоскодонных тиглях, закрытых крышкой на переднем конце, где имеется центральное отверстие. Через отверстие металл переносится в форму для литья (картинка ниже).
Тигли для плавления горелкой обычно отливаются в глиноземных огнеупорных материалах и, если такие тигли защищены от механических повреждений, срок службы исчисляется многими годами.
На современном этапе технологического совершенства значительное внимание уделяется конструкции факельных плавильных машин для обеспечения:
- эффективной плавки,
- плавного переноса расплава в форму,
- предотвращения тангенциальных потерь при ускорении консоли разливочной машины.
Несмотря на то, что неглубокая конфигурация тигля для источника нагрева способствует быстрой плавке, такая конфигурация также может способствовать окислительному расходу или газовой абсорбции в результате большой открытой поверхности расплавленного металла.
Однако, опытные плавильщики, использующие эффективную горелку, не испытывают затруднений в производстве газосодержащих и свободных от оксидов расплавов при получении любого ювелирного сплава.
Городской газ, природный газ, пропан или ацетилен используются в качестве топлива для горелок в сочетании с воздухом или кислородом под давлением. Факельное плавление (горелкой) сопровождает существенный технический недостаток, однако.
Заключается недостаток в том, что регулирование температуры и защита расплава от окисления невозможны. Подготовка металла в оптимальных условиях для литья зависит от квалификации оператора. Применение вакуума или инертной атмосферы исключается.
Тип #3: Плавильные машины сопротивления
Использование плавки золота сопротивлением ограничено двумя типами литейных машин. Один тип использует горизонтальную цилиндрическую печь с проволочной обмоткой.
Конструкция оснащается цилиндрическим графитовым тиглем с загрузочным отверстием на одном конце и заливочным отверстием на другом. Печь жёстко закреплена на прямой литейной консоли, а пресс-форма закреплена на ступенчатой скользящей пластине.
Термопара, установленная в канавке на внешней стенке тигля, позволяет контролировать температуру печи. Закрытая конструкция графитового тигля обеспечивает чистые безгазовые расплавы при температуре плавления до 1000°C.
Машина сопротивления, однако, имеет ограниченную производительность, максимум около 620 г сплава золота 18 карат. Кроме того, плавление происходит медленно, трудно наблюдать за состоянием плавления, а рычаг приводится в движение пружиной.
Техника плавления сопротивлением
Машина для плавления сопротивлением, представляющая большой интерес для ювелиров, выпускается в диапазоне размеров с максимальной вместимостью 18-каратного золота от 200 до 2000 г.
Первоначально разработанная для применения в стоматологии, эта система уникальна тем, что здесь используется углерод стойкий нагрев. Перенос металла выполняется путём наклона, благодаря центробежной конфигурации.
Печь имеет трубчатую форму с вертикальной осью для плавки, вращающейся на цапфах с переводом в горизонтальное положение для разлива. Печь устанавливается на краю горизонтального поворотного стола с механическим приводом. Конструкция несёт противовес или вторую печь на противоположном краю.
Сначала форму помещают жерлом вниз над верхом плавильного тигля и фиксируют на месте. Когда металл расплавляется, поворотный стол изменяет местоположение, расцепляющее устройство освобождает печь, которая переводится в горизонтальное положение с последующим заполнением формы.
Наклон в горизонтальное положение контролируется масляной приборной панелью, чем обеспечивается плавный перевод металла внутрь формы, по сравнению с другими системами.
Металл может быть расплавлен в графитовом или керамическом тигле, прикреплённом внутри керамического вкладыша к трубчатому элементу сопротивления.
Применительно к ювелирным сплавам, практического ограничения температуры плавления не существует. Условия плавления неизбежно снижаются и являются вполне удовлетворительными для нормальных цветных золотых сплавов.
Однако для случаев сплавов белого золота, в частности мягких сплавов с высокой температурой плавления, существует опасность захвата вредных примесей:
что приводит к серьёзной тепловой коррозии и явному охрупчиванию.
Система плавления сопротивлением
Температура печи может контролироваться термопарой, расположенной между резистивным элементом и футеровкой печи. Но при такой конфигурации может существовать значительная разница между указанной и фактической температурой металла.
Система плавления сопротивлением демонстрирует удовлетворительное применение центробежного принципа для литья ювелирных изделий:
- Комфортные условия плавления.
- Возможен некоторый контроль температуры расплава.
- Достигается плавный, контролируемый перенос металла.
- Стоимость оборудования невысокая.
Недостатками такого типа машин являются:
- Ограниченная максимальная вместимость,
- Невозможность загрузки крупногабаритного лома.
- Медленное плавление.
- Ограниченный срок службы нагревательного элемента.
Плавление сопротивлением обеспечивает плавный центробежный перенос металла, по сравнению, к примеру, с индукционной плавкой. Однако это преимущество видится не актуальным в будущем, при условии сохранения технологии статического литья на первых позициях.
Тип #4: Высокочастотные индукционные машины
В настоящее время машины центробежного литья индукционной плавкой явно выделяются из всех типов машин для литья ювелирных изделий. Высокочастотные индукционные плавильные машины продаются многими производителями Европы, США, Китая.
По сути, все эти конструкции напоминают системы с встроенным клапаном на водяном охлаждении или твердотельные генераторы с номинальной мощностью от 3 до 18 кВт на коротко выдвинутых катушках.
Плавка происходит в вертикально тиглях, как правило, установленных на жёстком уравновешенном силовом центробежном отливном рычаге, вращающемся в горизонтальной плоскости.
Ёмкость плавления варьируется от 150 г до 5 кг 18-каратного сплава золота. Считается, что слабым местом большинства таких машин является механизм переноса металла из тигля в кристаллизатор.
Это обусловлено тем, что стенки тигля наклонены наружу на несколько градусов от вертикали, и в верхней части стороны предусмотрено отверстие для слива, обращённое наружу от центра вращения и совмещённое с центром горловины горизонтальной формы.
Использование керамических тиглей
В случае керамических тиглей, половина тигля со стороны отверстия для заливки может быть покрыта цельным литым колпаком. Но в случае более широко используемых графитовых тиглей, отверстие для заливки представляет собой полукруглое углубление в верхнем крае, которое покрыто свободно переносимой плоской крышкой.
Когда центробежный рычаг приводится в движение, центростремительная сила заставляет расплавленный металл подниматься вверх по наклонной стенке тигля, противоположной центру вращения. Подъём происходит до момента, пока не достигнуто разливочное отверстие, через которое металл быстро сбрасывается внутрь формы.
Очевидно, что имеется только небольшая составляющая центростремительной силы, чтобы заставить металл подниматься по стенке тигля, но как только металл достигает разливочного отверстия, к нему внезапно прикладывается полная сила. Момент сброса сопровождается быстротечностью и высокой турбулентностью.
Момент сброса и центростремительная сила
Если центростремительная сила высока, такое состояние может привести к чрезмерному захвату воздуха в металлическом потоке. Эффект способен вызвать значительную и нередко дефектную пористость в отливках.
Если воздух захвачен металлом и затвердевание происходит быстро, как это обычно бывает, времени для вытеснения воздуха из полости кристаллизатора может не хватить, прежде чем начальная сплошная металлическая оболочка сформируется на стенках кристаллизатора.
При более медленном затвердевании металла внутри отливки центробежное действие приводит к тому, что пузырьки воздуха задерживаются под поверхностью отливок в точках, обращенных к оси вращения.
Поэтому видится важным, чтобы какая-то форма управления скоростью, которая позволяет прогрессивное приложение центробежной силы, применялась на машинах индукционной плавки.
Если на машине индукционной плавки есть контроль температуры, это может быть сделано при помощи радиационных пирометров или погружаемых термопар.
На показания пирометра могут влиять оксидные плёнки на поверхности расплава, пары или неэффективное перемешивание при радиочастотном плавлении. Термопары могут пострадать от паразитных токов, а срок службы оболочки часто слишком короткий.
Таким образом, оба способа управления имеют ограничения, но оптическая пирометрия намного проще для использования с тиглем, который должен перемещаться, и на котором трудно организовать электрические соединения.
Механически обработанный графит
Плавление цветных золотых сплавов обычно происходит внутри механически обработанного графита или электропроводящих тиглях из карбида биликона.
При использовании очень высокочастотных токов, подключение к металлической шихте не слишком эффективно. При использовании тигля в качестве токоприемника достигается более эффективное плавление.
Использование графитовых тиглей также обеспечивает определенную степень защиты атмосферы над расплавом. Правда, для сплавов с высоким содержанием основного металла этого недостаточно для предотвращения окисления.
Поэтому большинство машин имеют оборудование для введения инертной (восстановительной) атмосферы над тиглем.
Используемая атмосфера может включать:
- природный газ,
- азотно-водородные смеси,
- аргон.
С последним газом могут возникнуть трудности, если в составе аргона содержится влага. Может произойти восстановление водяных паров в графитовом тигле, что приведёт к абсорбции водорода в расплав с последующим появлением газовой пористости в отливах.
Тип #5: Статические плавильные машины
Простые статические машины для литья под давлением воздуха или пара использовались параллельно с центробежными машинами для литья зубных коронок несколько дольше, чем литьё ювелирных изделий коммерческим способом.
Эти машины были пригодны только для разливки небольших расплавов, изготовленных в верхней части формы. Раннее коммерческое литьё ювелирных изделий осуществлялось преимущественно с помощью центробежных машин.
Для производства ювелирных изделий в небольших масштабах впервые в Соединённых Штатах начали появляться простые статические машины. Вместе с тем было ограничено использование более крупного оборудования того же общего типа для литья изделий утолщённого сечения.
Принципиальные отличия конструкций
Принцип всех этих машин состоял в следующем: форму помещали на жаропрочную прокладку на плоском столе над отверстием, соединённым с вакуумным насосом. Вакуум прикладывали к основанию формы во время заливки расплавленного металла.
Низкое давление в полости пресс-формы вызывало атмосферное давление, заставляющее металл проникать в пресс-форму, а заполнению способствовало уменьшение амортизационного эффекта воздуха в полости пресс-формы.
Методы, пусть даже эффективные для отливки небольших форм или тяжёлых секций, непригодны для отливки ювелирных изделий в промышленных масштабах. Только в 1970 году коммерческое оборудование для литья по выплавляемым моделям стало доступным для производителей.
Процесс, правильно описанный как «литьё под давлением с применением вакуума», а не как «литьё под вакуумом», достаточно прост. Используется перфорированная литьевая колба с тяжелым фланцем на верхнем или входном конце расплавленного металла. Пресс-формы заливаются обычным способом с одним входом литника в полость.
Машина плавильная статическая состоит из цилиндрической литейной камеры, достаточно большой, чтобы вместить самую большую используемую форму, которая имеет открытый верх с фланцем, соответствующим фланцу на колбе. Камера отливки установлена внутри вакуумной полости большого объёма, изолирована от этой полости быстродействующим клапаном большого диаметра.
Вакуумная камера снабжена простым манометром. Атмосферный воздух откачивается из полости роторным насосом.
Особенности проведения плавки металла
Металл плавится независимо в любой подходящей тигельной печи, и, когда необходимо выполнить отливку, вакуумная полость откачивается при закрытом клапане, горячая литейная форма помещается на фланец камеры литья, оснащённой термостойкой прокладкой.
Расплавленный металл просто выливается внутрь формы вручную, вакуумный клапан открывается на мгновение, прежде чем поток металла касается поверхности формы. Этот метод даёт хороший результат при производстве больших объёмов мелких ювелирных изделий.
Также видится подходящим для отливок больших размеров, слишком тяжёлых для производства на центробежных машинах. Недостатками являются стоимость специально разрабатываемых контейнеров, сложность точной установки или извлечения этих контейнеров из разливочной машины при температуре до 700°C.
Тем не менее, производители оборудования внедрили несколько разработок, направленных на упрощение и экономичность эксплуатации. Методы литья под вакуумом работают хорошо в руках опытных операторов.
Эффективность литья тонких профилей
Но всё еще существует противоречие относительно эффективности методов для литья тонких профилей. Это связано с тем, что правильное литьё под давлением, пожалуй, более важно, чем при центробежном литьё, а время открытия вакуумного клапана относительно разливки металла имеет первостепенное значение.
По этой причине были разработаны автоматические машины, где полость пресс-формы заранее откачивается вместе с пресс-формой в герметичной камере. Это, пожалуй, самые сложные литейные машины, существующие в настоящее время.
Конструкция имеет полностью закрытую камеру для литья. Разливочное отверстие в крышке камеры закрыто на дне плавильной печи, которая снабжена нижним тиглем для разлива, закрытым сверху графитовой пробкой, несущей термопару.
Плавление в больших машинах происходит посредством индукции средней частоты. Простой перенос расплавленного металла из тигля в кристаллизатор контролируется. Осуществляется контроль достижением либо требуемой температуры металла, либо парциального давления в литейной камере.
Контроль на современных машинах
В автоматических машинах недавней конструкции:
- индукционная катушка,
- тигель,
- механизм выпуска металла,
полностью заключены в отдельную металлическую вакуумную камеру, что позволяет осуществлять полный вакуум или плавку и разливку в инертной атмосфере.
Также разрабатываются машины, где индукционная катушка и пресс-форма заключены в одну вакуумную камеру. Разливка обычно осуществляется путём наклона тигля с помощью внешних элементов управления.
В простейшем случае давление разливки устанавливается путем вакуумирования камеры во время плавления и последующего воздействия атмосферного давления в момент заливки металла в форму.
Большинство сплавов золота с низким содержанием карата не рекомендуется плавить при низких давлениях. Для таких сплавов используются машины с полной вакуумной камерой. Используется обратная закачка инертным газом до парциального давления, достаточного для устранения улетучивания легирующих элементов.
В этом случае возможность применения полного вакуума к основанию пресс-формы в момент литья является решающим преимуществом.
Тип #6: Гибридные плавильные машины
Разработка центробежных индукционных плавильных машин заключалась в том, чтобы использовать плавильную катушку и литейную консоль в вакуумной камере. Этот шаг привёл ко многим проблемам проектирования. Плавильные машины значительно подорожали, но улучшение качества отливок осталось под вопросом.
Поэтому назрело несколько иное решение — применение вакуума в донной области литейных форм, в то время как отливка осуществлялась обычными центробежными методами. Обусловлен подход тем, что вакуумом вытягиваются «вредные» газы из кристаллизатора до того момента, когда поступает металл.
Давление атмосферы на металл способствует заполнению пресс-формы. Однако маловероятно, что какой-либо «вредный» газ останется присутствовать в правильно созданных формах для вложений.
Вакуум не прикладывается к основанию кристаллизатора до тех пор, пока не начнётся вращение литейного рычага. Таким образом, не происходит существенной продувки пресс-формы перед входом металла, и в лучших случаях только частично вакуум достигается до затвердевания металла.
Понятно, что одним из факторов в процессе литья по выплавляемым моделям является то, что воздух или газ должны вытесняться из невентилируемой полости пресс-формы через инвестиционный материал с низкой пористостью под давлением расплавленного металла.
Существует достаточно практических доказательств того, что помощь со стороны центростремительной силы или атмосферного давления и гравитации достаточна для преодоления этой проблемы.
Благоприятные результаты (если таковые имеются) сложного вращения и неэффективной вакуумной помощи не оправдывают усложнение и стоимость таких гибридных машин.
При помощи информации: TheGoldSmiths
Литье по выплавляемым моделям — технология
Издавна литьё по выплавляемым моделям пользовалось популярностью. С помощью данной технологии выливались пушки, колокола, античные скульптуры. Технологии сегодняшнего дня значительно усовершенствовались. Они дают возможность сделать детали, которые отличаются сложными конструкциями, малым весом, не требуют механической доработки.
Технология
Этот метод используется для производства изделий из разных сплавов. Обеспечивается показатель качества до ±0,005 мм на каждые 25 мм поверхности. Указанная точность позволяет изготавливать изделия, которые не требуют дополнительной обработки. Залог успешности технологического процесса в том, что модель производится из быстро плавящегося вещества. Используется парафин, воск, канифоль либо их смесь.
Технологический процесс состоит из действий:
- Производство модели:
- под модель берётся специальная форма из гипса, пластмассы, стали либо чугуна;
- в нее заливается вещество образующее модель;
- необходимо дождаться его полного застывания;
- после этого специальная форма открывается, восковая модель вынимается и помещается в емкость под прохладную воду.
- Сборка моделей в блоки:
- для производства качественного изделия модели собираются в простые и сложные блоки, в каждый из них может войти от 2 до 100 штук;
- для увеличения прочности в блочную конструкцию устанавливают алюминиевые стойки;
- их покрывают слоем модельного вещества до 25 мм;
- блочные конструкции объединяются в литниковую систему.
- Нанесение на модель огнестойкой оболочки:
- блок собранный из нескольких моделей помещается в емкость, где находится суспензия из керамики (кварцевая пыль, мелкие фракции шамота) и связывающего компонента (этилово силикатного раствора);
- на протяжении суток он сушится в естественной среде, это время можно сократить до 40 минут под воздействием аммиака;
- таким образом, на указанный блок поочередно наносится 46 слоёв огнезащитной оболочки, с тщательной просушкой каждого из них;
- завершенная модель в огнезащитной оболочке помещается в нагретую воду 90°С;
- за несколько минут модельное вещество растает и всплывет на поверхность воды, где оно собирается для следующего применения.
- Подготовление формы к заливке:
- пустая оболочка промывается в воде и сушится в шкафу на протяжении 2 часов при 200°С;
- сухая оболочка выставляется вертикально в жаростойкую опоку и по краям уплотняется кварцевым песком, помещается в печь на 2 часа при 950°С;
- в печи испаряется оставшаяся влага, остатки модельного состава выгорают, оболочка спекается с огнеупорным материалом, повышая прочность;
- расплавленный металл заливается в прокаленную горячую форму.
- Охлаждение отливки:
- после того, как отливка остыла — оболочка разрушается;
- изделие очищается от ее остатков, для чего поддается химической очистке;
- далее изделие промывается водой и подвергается окончательной сушке.
В итоге, оно подлежит для проведения термической обработки и снятия контрольных мерок. Таким образом изготавливаются отливки необходимого размера и конфигурации.
Литниково-питающая система при литье по выплавляемым моделям
Ее особенности заключаются в следующем:
1. Этот метод продолжительное время используется в литейном производстве, дает возможность делать сложные конструкции, упрощает процесс производства. Система состоит из:
- воронки для литья;
- опоры;
- питателей и зумпфа.
При заливке — струя делится в зумпфе, что уменьшает температурное воздействие. Это положительно влияет на качество отливки. Она применяется в машиностроении и других отраслях промышленности.
2. Могут проявиться следующие недостатки:
- гидродинамический удар способен создать трещины в керамической форме;
- увеличение струи литья может разрушить оболочку;
- завихрения струи могут спровоцировать отслоение элементов и их попадание в структуру готового изделия.
Для предотвращения этого разработано техническое решение по разделу струи горячего металла, что оберегает общую конструкции от преждевременного разрушения.
3. Правильное соотношение между преимуществами и недостатками такой конструкции при осуществлении литья понизит негативное воздействие на 40%. Для этого необходимо сделать следующее:
- модель производится из обычных материалов; на форму наносится определенное количество слоев, защищающих ее от температурного воздействия;
- каждый слой после нанесения должен высохнуть на 100%;
- в период заливки расплавленного металла плавно увеличивается струя.
Это все приводит к увеличению прочности оболочки и понижению воздействия на нее. Простое решение при литье по выплавляемым моделям приводит к использованию системы в промышленных масштабах. Что значительно удешевляет стоимость готовой продукции.
Изготовление выплавляемых моделей
Для этого применяются легкоплавкие составы, которые состоят из парафина, церезина, воска и других компонентов. Эти составы должны иметь свойства:
- температура плавки 60–81,6 °С;
- стабильная линейная усадка и расширение должны свестись к минимуму;
- хорошая текучесть материала;
- хорошая прочность и твердость в застывшем состоянии;
- не прилипать к поверхности, минимальное образование золы;
- не вступать в химические реакции с огнеупорными материалами пресс-формы; отсутствие вредных паров во время нагревания;
- многократное применение;
- малая стоимость комплектующих материалов.
Сущность заключается в том, что модельный материал должен собой заполнить все элементы формы и не допустить ее повреждения. А впоследствии, не нанеся ущерба вытечь из формы, освободив место для металлической заливки.
Операции получения отливки
Существуют особенности литья по выплавляемым моделям при производстве подобных изделий. К ним относятся:
- Расплавленный металл заливается равномерно и постепенно. Это даёт возможность сделать выплавляемые детали с гладким и точным покрытием, которое не будет нуждаться в механической доработке.
- Литьё должно иметь необходимую температуру, для каждого материала она разная.
- Время заливки расплавленного состава будет зависеть от сложности будущей конструкции. Важно это делать постепенно, однако не затягивать процесс слишком долго.
- Чтобы выплавить качественное изделие необходимо осознавать, что тонкие детали кристаллизуются и остывают быстрее чем массивные элементы.
- Чтобы литьё остывало равномерно, форму оснащают специальным теплообменником в виде элементов с повышенной проводимостью тепла. Это может быть чугун либо графит.
- При охлаждении литьё передает свою температуру на форму неравномерно, на ее внутренней стороне температура не отличается от остывающей заготовки.
- Выбивка выплавляемой продукции производится после окончания процесса кристаллизации и полного остывания. Спешка может негативно сказаться на качестве изделия.
Благодаря выплавляемым моделям есть возможность сделать своими силами деталь любой сложности. Это дает возможность усовершенствовать производство необходимых предметов.
Плюсы и минусы процесса
Литьё по выплавляемым моделям имеет свои преимущества:
- отсутствие разъема в форме приводит к повышению точности литья;
- простота действий и дешевизна рабочего процесса;
- возможность сделать огромное разнообразие форм для отливки;
- широкий диапазон размеров и массы отливок;
- дает возможность получить сложные конструкции из любых сплавов;
- высокая точность изделия и чистота поверхностного слоя может исключить необходимость последующей механической обработки;
- оболочка легко разрушается;
- отливки хорошо очищаются от ее остатков.
Присутствуют и недостатки:
- требует осторожности в ходе проведения технологического процесса литья;
- длительность рабочего процесса подготовки формы;
- данное производство является рентабельным только при его массовом применении;
- необходимость проветривания в помещении;
- следует строго придерживаться технике безопасности;
- работа с расплавленным металлом требует особого внимания.
Как видим, литьё по выплавляемым моделям обладает достаточным количеством преимуществ, по этой причине оно широко применяется в различных отраслях машиностроения.
Цеха для литья по выплавляемым моделям находятся во многих самодостаточных заводах. Это позволяет делать качественные детали с большой точностью в короткие сроки, экономя денежные средства.
Источник https://almeg.ru/litejnoe-oborudovanie/oborudovanie-dlya-litejnogo-proizvodstva/
Источник https://almeg.ru/litejnoe-oborudovanie/oborudovanie-dlya-litya-po-vyplavlyaemym-modelyam/