Ветрогенератор из мотор-колеса гироскутера

Содержание

Ветрогенератор из мотор-колеса гироскутера

Ветрогенератор из гироскутера

В поисках информации на тему самодельных ветряков перелопатили уйму материалов и были крайне недовольны обрывочностью данных и несостыковками в суждениях. К счастью на зарубежном сайте, посвящённому самоделкам, наткнулись на интересную и подробную инструкцию от автора под ником DIY KING 00. Решили разобрать, как он делал ветрогенератор из мотор-колеса своими руками, дополнив нашими комментариями. Ссылка на источник в конце этой статьи.

Собираем ветрогенератор из мотор-колеса пошагово

Шаг 1: Материалы и инструменты

Следующий список материалов и инструментов — то, что понадобилось автору в работе, но он подчёркивает, что с этим было удобно работать именно ему, а кому-то для достижения цели может понадобиться что-то ещё.

Перечень материалов, использованных в этом проекте:

  • Старый гироскутер.
  • Труба ПВХ 150 мм.
  • Металл 3-7 мм (автор использовал сталь).
  • Фанера.
  • Гайки, болты и шайбы
  • Оцинкованная труба 75 мм.

Старый гироскутер

  • Лист фанеры
  • Болты и гайки
  • Металлические пластины
  • Пластиковая труба
  • Список инструментов, используемых в этом проекте:

    • Ручная дрель.
    • Электролобзик.
    • Инструмент для резки металла.
    • Углошлифовальная машина.
    • Паяльник.
    • Плоскогубцы.
    • И еще несколько ручных инструментов…

    Паяльник и плоскогубцы

  • Электрическая дрель
  • Шаг 2: Генератор

    Для ветряка автор решил использовать бесщеточный мотор-колесо, который попался ему в старом гироскутере, найденном на свалке. Причина использования двигателя с постоянным магнитом заключается в том, что не нужно беспокоиться, как минимум об износе щеток, потому что их здесь просто нет.

    Старый гироскутер

    Двигатели для гироскутеров могут выдавать хорошее напряжение даже при ручном проворачивании. А этот фактор очень важен для ветрогенератора, т.к. даже при небольших порывах ветра можно получить хорошее напряжение.

    Автор разобрал гироскутер и извлёк одно из колёс. Обычно в этих транспортных средствах движки хорошо сохраняются. Их работоспособность можно проверить следующим образом: закрепите ось колеса в тисках, подсоедините лампочку к проводам и быстро раскрутите мотор руками. Лампочка должна ярко гореть.

    Разборка гироскутера

  • Колесо гироскутера
  • Разборка мотор-колеса
  • Шина с колеса снимается достаточно просто отвёрткой. Чтобы разобрать колесо, понадобилось снять заднюю пластину и, потянув с усилием за ось, отделить статор от ротора.

  • Статор двигателя
  • Ветряк из бутылок

    Шаг 3: Держатель лопастей

    Чтобы двигатель вращался, нам нужно преобразовать энергию ветра в электрическую. Для этого лопасти должны раскрутить двигатель. Для крепления лопастей автор собрал специальную конструкцию.

    Основой держателя выступили 2 стальных диска толщиной 3 мм и диаметром 150 мм. Каждая лопасть будет крепиться к стальным полоскам шириной 25 мм, толщиной 5 мм и длинной 200 мм. Оптимальное количество лопастей для ветряка — 5, а значит и держателей нужно столько же. Их необходимо закрепить равными промежутками между круглыми пластинами, и всю полученную конструкцию установить на корпус мотор-колеса.

    Резка направляющих

  • Заготовки направляющих
  • Металлические заготовки и шаблон
  • По шаблону высверливаются отверстия:

    • На корпусе двигателя — в 3-х местах по 2 отверстия, чтобы установить держатель.
    • На каждой полоске — 2 отверстия под крепления между дисками, а также 3 отверстия на равном расстоянии под лопасти ветряка.
    • На дисках — отверстия под крепление к корпусу мотора и для установки 5-ти направляющих.

    Готовый шаблон

  • Диски с отверстиями
  • Сверление корпуса
  • Все детали готовы к сборке.

  • Направляющие с отверстиями
  • Шаг 4: Сборка держателя лопастей

    При сборке держателя убедитесь, что всё расположено на равных расстояниях и хорошо закреплено, т.к. в противном случае подшипники прослужат недолго.

    Крепление направляющих

  • Прикручиваем направляющие
  • Закручивание гаек на держателе
  • Держатель в сборке
  • Замер расстояния между направляющими
  • Держатель лопастей собран
  • Готовый держатель для лопастей
  • Мотор и держатель
  • Крепление держателя к двигателю изнутри
  • Когда конструкция держателя собрана и установлена на роторе, можно собирать двигатель, отрезав 5 тонких проводков, которые в нашем случае не нужны.

    Прикручиваем держатель лопастей к двигателю

  • Сборка двигателя
  • Установка крышки на генератор ветряка
  • Собранный двигатель
  • Шаг 5: Кронштейн

    Важная часть — кронштейн. На него устанавливается двигатель с лопастями и хвост, а снизу крепится поворотный механизм.

    Автор использовал стальную полосу шириной 50 мм и толщиной 7 мм.

    Заготовка под кронштейн

  • Металлическая заготовка для кронштейна
  • Отверстия в кронштейне:

    1. Мотор-колесо будет прикреплено с помощью фиксатора, который удерживает его в гироскутере. Для этого фиксатора с одной стороны кронштейна необходимо просверлить 4 отверстия.
    2. С другой стороны будет установлен хвост. Из практичных соображений здесь кронштейн лучше заузить, как показано на фото. Понадобится 2 отверстия.
    3. Под поворотный механизм понадобится 4 отверстия посередине, а между ними отверстие 36 мм под большой болт в механизме.

    Отверстия в кронштейне посредине

  • Отверстия для мотора
  • Сверление отверстия в кронштейне
  • Сверление большого отверстия в кронштейне
  • Отверстия для хвоста
  • Шаг 6: Поворотный механизм

    Эта часть нужна, чтобы ветряк мог вращаться по направлению ветра. Чтобы сэкономить время и деньги, автор адаптировали шарнирный механизм гироскутера, благодаря которому его платформы поворачиваются вверх и вниз.

    Откручиваем две половины корпуса друг от друга, убираем втулку межу ними и отрезаем нужную деталь. Со сторон среза делаем 4 отверстия под крепление к кронштейну.

    Корпус гироскутера

  • Разборка корпуса гироскутера
  • Извлекаем втулку
  • Отрезаем нужную деталь
  • Отрезанный поворотный механизм
  • Сверлим отверстия в поворотном механизме
  • Для дальнейшей установки поворотного механизма на столб, автор сделал 2 переходника в виде металлических диска толщиной 4 мм и диаметром 100 мм. Один из них будет приварен к столбу, другой — крепится на поворотный механизм.

    Сверление основания для поворотного механизма

  • Сверления пластины для поворотного механизма
  • Втулка, которая была между двумя платформами гироскутера обрезается, чтобы полностью входить в корпус механизма.

    Втулка и поворотный механизм

  • Втулка из гироскутера
  • Основания, втулка и болт
  • Шаг 7: Изготовление хвоста

    Для хвоста автор использовал кусок фанеры толщиной 10 мм. С помощью лобзика он вырезал фигуру нужной формы.

  • Вырезаем хвост ветряка
  • Хвост ветряка
  • К хвосту автор прикрепил шестигранный стержень, закрепив его с помощью 2 металлических пластин. С другой стороны стержень имеет плоский конец с 2 отверстиями, через которые он будет крепиться к кронштейну. Тут можно использовать то, что у вас имеется под рукой, например, небольшой кусок арматуры.

    Сверление креплений для хвоста

  • Сверление отверстия в направляющей
  • Хвост, пластины и направляющая
  • Шаг 8: Лопасти

    Лопасти автор изготовил из трубы ПВХ диаметром 150 мм. Расчёты не производились, всё делалось на глаз. Для нарезки использовался лобзик. Каждая лопасть составила 130 мм в самой широкой части и почти 50 мм на вершине. Оба конца были обрезаны, чтобы придать им красивую форму и обеспечить плавное вращение.

    Труба для изготовления лопастей

  • Разрезание пластиковой трубы
  • Нарезанная труба
  • Заготовки под лопасти
  • Заготовка для лопасти
  • Нарезка лопастей
  • Закругление углов лопасти
  • Лопасть с отрезанным краем
  • Все лопасти получились по 1 м, и очень важно, чтобы они имели абсолютно одинаковую форму и размеры. В местах крепления к металлическому держателю сверлим 3 отверстия на каждой лопасти.

    Готовые лопасти

  • Лопасти с разметкой под болты
  • Шаг 9: Покраска

    Чтобы защитить металлические части от ржавчины, автор использовал чёрный матовый аэрозоль, что также придало стильный внешний вид. Хвост сделал белым.

    Неокрашенные детали

  • Покраска деталей
  • Покраска поворотного механизма
  • Окрашенные детали
  • Покраска хвоста ветряка
  • Шаг 10: Сборка ветряка

    Осталось собрать все детали с помощью гаек, болтов и шайб. В основании поворотного механизма используем большой болт, выступающий сердцевиной.

    Сборка поворотного механизма

  • Осевой болт в поворотном механизме
  • Поворотный механизм в собранном виде
  • Установка кронштейна
  • Прикручиваем кронштейн
  • Поворотный механизм и кронштейн
  • Установка направляющей хвоста
  • Установка хвоста
  • Установка генератора
  • Закреплённый генератор
  • Крепление лопастей
  • Лопасти на генераторе
  • Шаг 11: Выпрямитель тока

    Данный двигатель будет производить трёхфазный переменный ток. Чтобы преобразовать его в напряжение постоянного тока, автор разработал и собрал трехфазный выпрямительный блок.

    Схема выпрямителя тока

  • Схема платы выпрямителя тока
  • Заказ платы он делал у китайского производителя JLCPCB. Все файлы проекта выпрямительного блока можно найти здесь.

    Плата выпрямителя тока

  • Составляющие выпрямителя тока
  • Установка диода
  • Пайка выпрямителя тока
  • Обрезка ножек транзисторов
  • Собранный выпрямитель тока
  • Хотя вполне можно собрать схему попроще:

    Выпрямитель тока для ветряка, схема

    Шаг 12: Установка ветряка

    Для установки ветряка автор использовал оцинкованную трубу диаметром 75 мм. Нижний конец трубы был закреплён с помощью двух металлических скоб, а к верхнему концу трубы приварена металлическая пластина толщиной 5 мм, которая изготовлена ранее. К пластине крепится уже собранный ветряк.

    Труба для установки ветрогенератора

  • Основа под ветряк
  • Установка ветряка на трубу
  • Ветряк после установки
  • Установленный ветрогенератор
  • Подключение проводов ветряка
  • Изоляция скруток
  • Результат

    Ветрогенератор был установлен на крыше на высоте около 12 метров так, чтобы поблизости ничего не мешало потоку ветра.

    Ветряк с вращающимися лопастями

  • Ветрогенератор готов к работе
  • Генератор ветряка
  • Лопасти ветрогенератора
  • Через выпрямительный блок и понижающий преобразователь этот ветряк заряжает свинцово-кислотную батарею 12 В.

    Генератор может производить почти 150 Вт мощности при скорости ветра от 5 до 7 м/с. Это первая попытка построить ветрогенератор, поэтому в планах уже есть более крупный проект.

    Весь процесс запечатлён на виде:

    Ветрогенератор своими руками — самый простой способ по созданию ветрогенератора

    Так, удачным под установку выглядит мотор производства фирмы Ametek с рабочим напряжением 36 вольт и угловой скоростью вращения — 325 об/мин. Именно такой электродвигатель используется в конструкции ветрогенератора – установки, что описана ниже в качестве примера домашнего ветряка.

    Мотор постоянного тока для домашнего ветрогенератора. Оптимальный вариант из числа продуктов, изготовленных фирмой Ametek. Также удачно подходят подобные электродвигатели производства других фирм

    Проверить эффективность любого похожего мотора несложно. Достаточно подключить к электрическим выводам обычную автомобильную лампу накаливания на 12 вольт и крутануть вал мотора рукой. При хороших технических показателях электродвигателя лампа обязательно зажжётся.

    1.1 Законность установки ветрогенератора

    Альтернативные источники энергии – мечта любого дачника или домовладельца, участок которого находится вдали от центральных сетей. Впрочем, получая счета за электроэнергию, израсходованную в городской квартире, и глядя на возросшие тарифы, мы осознаём, что ветрогенератор, созданный для бытовых нужд, нам бы не помешал.

    Эксплуатация турбинных ветрогенераторов в тундре

    Прочитав эту статью, возможно, вы воплотите свою мечту в реальность.

    Ветрогенератор – отличное решение для обеспечения загородного объекта электроэнергией. Причем в ряде случаев его установка является единственным возможным выходом

    Чтобы не потратить зря деньги, силы и время, давайте определимся: есть ли какие-либо внешние обстоятельства, которые создадут нам препятствия в процессе эксплуатации ветрогенератора?

    Ветроэнергетические ресурсы России

    Для обеспечения электроэнергией дачи или небольшого коттеджа достаточно малой ветроэнергетической установки, мощность которой не превысит 1 кВт. Такие устройства в России приравнены к бытовым изделиям. Их установка не требует сертификатов, разрешений или каких-либо дополнительных согласований.

    Для того чтобы определиться с целесообразностью устройства ветрогенератора, необходимо выяснить ветроэнергетический потенциал конкретной местности (кликните для увеличения)

    Никакого налогообложения производства электроэнергии, которая расходуется на обеспечение собственных бытовых нужд, не предусмотрено. Поэтому маломощный ветряк можно смело устанавливать, вырабатывать с его помощью бесплатную электроэнергию, не уплачивая при этом государству никаких налогов.

    Роторный ветрогенератор

    Впрочем, на всякий случай следует поинтересоваться, нет ли каких-либо местных нормативных актов, касающиеся индивидуального энергоснабжения, которые могли бы создать препятствия в установке и эксплуатации этого устройства.

    Ветрогенераторы, которые способны удовлетворить большинство потребностей среднего фермерского хозяйства, не могут вызвать нареканий даже со стороны соседей

    Претензии могут возникнуть у ваших соседей, если они будут испытывать неудобства, связанные с эксплуатацией ветряка. Не забывайте, что наши права заканчиваются там, где начинаются права других людей.

    Поэтому при покупке или самостоятельном изготовлении ветрогенератора для дома нужно обратить серьёзное внимание на следующие параметры:

    • Высота мачты. При сборке ветрогенератора нужно учитывать ограничения на высоту индивидуальных построек, которые существуют в ряде стран мира, а также местонахождение собственного участка. Знайте, что поблизости от мостов, аэропортов и тоннелей строения, высота которых превышает 15 метров, запрещены.
    • Шум от редуктора и лопастей. Параметры создаваемого шума можно установить при помощи специального прибора, после чего зафиксировать результаты замеров документально. Важно, чтобы они не превышали установленные шумовые нормы.
    • Эфирные помехи. В идеале при создании ветряка должна быть предусмотрена защита от создания телепомех там, где ваше устройство может такие неприятности обеспечить.
    • Претензии экологических служб. Эта организация может препятствовать вам в эксплуатации установки только в том случае, если она мешает миграции перелетных птиц. Но это маловероятно.

    При самостоятельном создании и монтаже устройства учите эти моменты, а при покупке готового изделия обратите внимание на параметры, которые стоят в его паспорте. Лучше заранее обезопасит себя, чем впоследствии расстраиваться.

    1.2 Источник электричества

    Как минимум 1 раз в год увеличиваются тарифы на услуги электроэнергии, зачастую — в несколько раз. Это бьет по карману граждан, зарплата которых не растет столь же стремительно. Домашние умельцы раньше прибегали к простому, но довольно небезопасному и незаконному способу экономии на электроэнергии. Они прикрепляли к поверхности расходомера неодимовый магнит, после чего тот приостанавливал работу счетчика.

    Если указанная схема изначально работала слаженно, то в дальнейшем с ней возникали проблемы. Объяснялось это несколькими причинами:

    Счётчик для электроэнергии

    1. Контролеры стали чаще ходить по домам и проводить внеплановые проверки.
    2. На счётчики стали приклеивать особые стикеры, под воздействием которых стали темнеть магнитные поля. Соответственно, вычислить такого нарушителя не составляло проблемы.
    3. Стали выпускаться новые счётчики, которые не имели восприимчивости к магнитному полю. Вместо стандартных моделей появились электронные узлы.

    Всё это подтолкнуло людей к поиску альтернативных источников электроэнергии, к примеру, ветрогенераторов. Если человек проживает в областях, где регулярно дуют ветры, такие приспособления становятся для него «палочкой-выручалочкой». Устройство использует силу ветра для получения энергии.

    Корпус оснащен лопастями, приводящими в движение роторы. Электроэнергия, полученная таким образом, трансформируется в постоянный ток. В дальнейшем она переходит к потребителям либо накапливается в аккумуляторе.

    Самодельный ветрогенератор может выступать в качестве главного или дополнительного источника энергии. В качестве вспомогательного устройства он может греть воду в бойлере либо подпитывать домашние светильники, тогда как вся остальная электроника работает от главной сети. Возможна работа таких генераторов и в качестве главного источника там, где дома не подключены к электричеству. Здесь устройства подпитывают:

    • лампы и люстры;
    • отопительное оборудование;
    • бытовую электронику.

    Ветровая электростанция способна подпитывать низковольтные и классические приборы. Первые работают от напряжения 12−24 Вольт, а ветрогенератор способен обеспечивать мощность на 220 Вольт. Он изготавливается по схеме с использованием инверторных преобразователей. Электричество накапливается в его аккумуляторе. Есть модификации на 12−36 Вольт. Они отличаются более простой конструкцией. Для них применяются стандартные контроллеры заряда аккумулятора. Чтобы обеспечить обогрев жилища, достаточно сделать ветрогенераторы своими руками нa 220 В. 4 кВт — это мощность, которую обеспечит их двигатель.

    Ветрогенератор своими руками

    1.3 Принцип работы ветряной установки

    Ветрогенератор или ветроэлектрическая установка (ВЭУ) – это устройство, которое используется в целях преобразования кинетической энергии потока ветра в механическую энергию. Полученная механическая энергия вращает ротор и преобразуется в необходимый нам электрический вид.

    Принцип действия и устройство кинетического ветряка подробно описаны в статье, с которой мы рекомендуем ознакомиться.

    В состав ВЭУ входят:

    • лопасти, образующие пропеллер,
    • вращающийся ротор турбины,
    • ось генератора и сам генератор,
    • инвертор, который преобразует переменный ток в постоянный, использующийся для зарядки батарей,
    • аккумулятор.

    Устройство ветрогенератора

    Суть устройства ветряных установок проста. В процессе вращения ротора образуется трехфазный переменный ток, который затем проходит через контроллер и заряжает аккумуляторную батарею постоянного тока. Дальше инвертор преобразует ток, чтобы его можно было потреблять, питая освещение, радиоприемник, телевизор, микроволновую печь и так далее.

    Подробное устройство ветрогенератора с горизонтальной осью вращения позволяет хорошо представить себе, какие элементы способствуют превращению кинетической энергии в механическую, а затем в электрическую

    Устройство ветрогенератора

    В целом, принцип работы ветрогенератора любого типа и конструкции заключается в следующем: в процессе вращения возникает три вида силового воздействия на лопасти: тормозящее, импульсное и подъёмное.

    Эта схема работы ветроустановки позволяет понять, что происходит с электроэнергией, произведенной работой ветрогенератора: часть её аккумулируется, а другая – потребляется

    Две последние силы преодолевают тормозящую силу и приводят в движение маховик. На неподвижной части генератора ротор формирует магнитное поле, чтобы электрический ток пошел по проводам.

    1.4 Классификация видов генераторов энергии

    Существует несколько признаком, по которым классифицируют ветроэлектрические установки. Как подобрать оптимальный вариант устройства для загородной собственности подробно рассказано в одной из самых популярных статей на нашем сайте.

    Итак, ветряки различаются по:

    • числу лопастей в пропеллере;
    • материалам изготовления лопастей;
    • расположению оси вращения относительно поверхности земли;
    • шаговому признаку винта.

    Встречаются модели с одной, двумя, тремя лопастями и многолопастные.

    Парусный ветрогенератор

    Изделия с большим числом лопастей начинают своё вращение даже при небольшом ветре. Обычно их используют в таких работах, когда сам процесс вращения важнее получения электроэнергии. Например, для извлечения воды из глубоких скважинных стволов.

    Оказывается лопасти ветрогенератора можно делать не только из твердых материалов, но и из доступной по цене ткани

    Лопасти могут быть парусными или жесткими. Парусные изделия намного дешевле жестких, на изготовление которых идёт металл или стеклопластик. Но их приходится очень часто ремонтировать: они непрочные.

    Что касается расположения оси вращения относительно земной поверхности, различают вертикальные ветряки и горизонтальные модели. И в этом случае каждая разновидность имеет свои преимущества: вертикальные более чутко реагируют на каждое дуновение ветра, зато горизонтальные мощнее.

    Ветрогенераторы разделяются по шаговым признакам на модели с фиксированным и изменяемым шагом. Изменяемый шаг позволяет существенно увеличивать скорость вращения, но такая установка отличается сложной и массивной конструкцией. ВЭУ с фиксированным шагом проще и надёжнее.

    1.5 Классификация ветровых электростанций для частного дома

    Агрегат, преобразующий кинетическую энергию направленного потока воздуха (ветра) сначала в механическую энергию вращающегося ротора, а затем в электрическую энергию, имеет несколько названий – «ветрогенератор», «ветроэлектрическая установка» (ВЭУ), бытовое название – «ветряк». Их классификация предлагает три категории – промышленные для работы на производственных предприятиях; коммерческие, вырабатывающие электричество на продажу; бытовые для индивидуального использования.

    В зависимости от расположения оси основного ротора в классификации имеются два типа устройств – вертикальный и горизонтальный. В устройствах вертикального типа ось турбины расположена вертикально по отношению к плоскости земли. Она может работать при небольшом ветре.



    У машин горизонтального типа ось ротора вращается параллельно поверхности земли. Такие ветрогенераторы имеют большую мощность преобразования энергии ветра в электрический ток. Их предшественники электричество не вырабатывали, но мололи муку, качали воду и делали много других полезных дел.


    1.6 Ветроэлектрическая установка роторного типа

    Ветрогенератор роторного типа

    Разберёмся, как смастерить своими руками простой ветряк с вертикальной осью вращения роторного типа. Такая модель вполне может обеспечить потребности в электроэнергии садового домика, разнообразных хозяйственных построек, а также подсветить в темное время суток придомовую территорию и садовые дорожки.

    Лопасти этой установки роторного типа с вертикальной осью вращения явно выполнены из элементов, вырезанных из металлической бочки

    Наша цель – изготовление ветряка, предельная мощность которого составит 1,5 кВт.

    Для этого нам понадобятся следующие элементы и материалы:

    • автомобильный генератор на 12 V;
    • гелиевый или кислотный аккумулятор на 12 V;
    • полугерметичный выключатель разновидности «кнопка» на 12 V;
    • преобразователь 700 W – 1500 W и 12V – 220V;
    • ведро, кастрюля большого объёма или другая вместительная ёмкость из нержавеющей стали или из алюминия;
    • автомобильное реле контрольной лампы заряда или зарядки аккумулятора;
    • автомобильный вольтметр (можно любой);
    • болты с гайками и шайбами;
    • провода сечением 4 квадратных мм и 2,5 квадратных мм;
    • два хомута для закрепления генератора на мачте.

    В процессе выполнения работ нам будут нужны болгарка или ножницы по металлу, строительный карандаш или маркер, рулетка, кусачки, сверло, дрель, ключи и отвертка.

    Контроллер для системы, генерирующей электроэнергию, также можно собрать своими руками. С правилами и схемами изготовления контроллера для ветряка ознакомит статья, с содержанием которой мы советуем ознакомиться.

    Стартовый этап изготовления установки

    Изготовление самодельного ветряка начинаем с того, что возьмем большую металлическую ёмкость цилиндрической формы. Обычно для этой цели используют старую выварку, ведро или кастрюлю. Именно она будет основой для нашего будущего ВЭУ.

    Основная деталь установки

    С помощью рулетки и строительного карандаша (маркера) нанесем разметку: поделим нашу ёмкость на четыре одинаковые части.

    Выполняя разрезы в соответствии с теми указаниями, которые содержатся в тексте, ни в коем случае не прорезайте металл до конца

    Металл придется резать. Для этого можно использовать болгарку. Её не применяют для разрезания ёмкости из оцинкованной стали или окрашенной жести, потому что металл такого вида обязательно перегреется. Для таких случаев лучше использовать ножницы. Вырезаем лопасти, но не прорезаем их до самого конца.

    Варианты, схемы и рекомендации по изготовлению различных моделей лопастей для ветрогенератора вы найдете в рекомендуемой нами статье.

    Другая конструкция лопастей

    Одновременно с продолжением работ над ёмкостью мы будем переделывать шкив генератора. В днище бывшей кастрюли и в шкиве нужно наметить и просверлить отверстия для болтов. К работам на этой стадии нужно отнестись максимально внимательно: все отверстия должны располагаться симметрично, чтобы в ходе вращения установки не возникло дисбаланса.

    Так выглядят лопасти ещё одной конструкции с вертикальной осью вращения. Каждая лопасть изготавливается отдельно, а потом монтируется в общее устройство

    Отгибаем лопасти так, чтобы они не слишком торчали. Когда мы выполняем эту часть работы, обязательно учитываем, в какую сторону будет вращаться генератор.

    Обычно направление его вращения ориентировано по ходу часовой стрелке. Угол изгиба лопастей влияет на площадь воздействия воздушных потоков и на скорость вращения пропеллера.

    Оригинальная конструкция лопастей

    Теперь нужно закрепить на шкиве ведро с подготовленными к работе лопастями. Устанавливаем генератор на мачту, зафиксировав его при этом хомутами. Осталось присоединить провода и собрать цепь. Подготовьтесь записать схему соединения, цвета проводов и маркировку контактов. Позже она вам непременно пригодится. Фиксируем провода на мачте устройства.

    Этот рисунок содержит подробные рекомендации по сборке общей конструкции и общий вид устройства уже в собранном и готовом к эксплуатации виде

    Для подсоединения аккумулятора нужно применить провода сечением 4 мм². Достаточно взять отрезок протяженностью 1 метр. Этого хватит.

    А для того чтобы подключить к сети нагрузку, в состав которой входят, например, осветительные и электрические приборы, достаточно проводов с сечением 2,5 мм². Устанавливаем инвертер (преобразователь). Для этого тоже будет нужен провод 4 мм².

    Преимущества и недостатки роторной модели ветряка

    Если вы сделали всё аккуратно и последовательно, то этот ветрогенератор будет успешно работать. При этом никаких проблем в ходе его эксплуатации не возникнет.

    Если использовать преобразователь 1000 W и аккумулятор 75А, это установка обеспечит электричеством и приборы видеонаблюдения, и охранную сигнализацию и даже уличное освещение.

    Достоинства этой модели таковы:

    • экономична;
    • элементы легко можно поменять на новые или отремонтировать;
    • особые условия для функционирования не нужны;
    • надежная в эксплуатации;
    • обеспечивает полный акустический комфорт.

    Недостатки тоже имеются, но их не так уж много: производительность этого устройства не слишком высока, и у него имеется значительная зависимость от внезапных порывов ветра. Воздушные потоки могут попросту сорвать импровизированный пропеллер.

    Для того чтобы точно подобрать модель ветрогенератора требующейся мощности перед началом работ советуем сделать расчет по приведенным в рекомендуемой статье формулам.

    1.7 Разбор ошибок конструирования

    Сборка ветрогенератора в бытовых условиях собственными руками – дело, конечно же, не безошибочное. Даже в конструкциях промышленных ветряков инженерами допускаются ошибки. Но на ошибках учатся, о чём подтверждают вполне состоявшиеся бытовые конструкции.

    Итак, среди ошибок при устройстве бытовых ветряных генераторов часто фигурирует такая деталь, как отсутствие в конструкции генератора модуля торможения. Стандартное исполнение таких приборов (автомобильных или тракторных) такой детали не предусматривает. Значит, генератор необходимо дорабатывать.

    Однако не каждому «конструктору» хочется заниматься этим тонким делом. Многие игнорируют эту деталь, надеясь на «авось». Как результат – при сильном ветре винт раскручивается до неимоверно высоких скоростей. Подшипники генератора не выдерживают, разбивают посадочные места алюминиевых крышек. Происходит клин ротора.

    Разрушенный ветрогенератор по причине недоработок в конструкции. Ошибки конструирования и монтажа подобных конструкций приводят к тяжёлым последствиям

    К этой же теме относится недоработка, связанная с отсутствием ограничителя поворота флюгера. Нередко этот компонент попросту забывают установить и вспоминают только тогда, когда потоки ветра начинают раскручивать «петушка» вокруг своей оси, как юлу в передаче «Что? Где? Когда?». Результат плачевный.

    Минимум ущерба – перекручивание и обрыв электрического кабеля, а в тяжёлых случаях – разнос всей конструкции.

    Другая примечательная ошибка сборки – неправильный расчёт точки центра тяжести на основании флюгера. В этом случае устройство какое-то время может функционировать нормально. Но со временем образуется перекос на подшипниковом узле, свобода вращения ограничивается, эффективность конструкции по отдаче энергии резко снижается.

    О том, как правильно рассчитать ветрогенератор, узнаете из предложенной нами статьи.

    Нередко током, полученным от генератора, пытаются напрямую питать аккумуляторную батарею. Совсем скоро начинают удивляться – почему аккумулятор не держит заряд или обнаруживают пробой 2-3 банок.

    Это банальная и естественная ошибка, так как в любом случае заряд АКБ должен проходить в условиях определённых токов и напряжений. Здесь нужен контроль этого процесса.

    Домашним мастерам, заинтересованным темой сборки ветрогенератора, предлагаем ознакомиться еще с одним оригинальным вариантом. В предложенной статье описано изготовление генерирующей установки из бросовых деталей стиралки.

    1.8 Выбор размера ветряка

    Подбирать размер этой установки нужно исходя из желаемого количества электроэнергии и скорости ветра, а также его плотности, в вашем регионе. Сразу нужно уточнить что расчет мощности будет производится для ветрогенератора заводского изготовления, не сделанного своими руками из подручных деталей.

    Количество необходимой электроэнергии вы можете постучать по счетам за последний год или взять произвольное (желаемое) количество.

    Скорость и плотность ветра можно найти в сети, например на сайте метеослужбы. Указывать какие то цифры в этой статье я не будут, так как регионов много и климат очень быстро меняется в последние годы.

    Существует несколько формул

    1. Самая простая и понятная среднестатистическому человеку, однако полученные данные могут иметь определенную погрешность. По ней можно рассчитать кинетический ветрогенератор с горизонтальным валом:

    AEO = 1.64 * D*D * V*V*V

    • AEO — электроэнергия, которую вы хотите получить за год.
    • D — диаметр ротора, который обозначается в метрах.
    • V — среднегодовая скорость ветра, обозначается в м/сек.

    2. Более сложная формула, которую используют для своих расчетов компании, занимающиеся продажей и установкой такого оборудования на профессиональном уровне.

    • V – скорость ветра в метрах в секунду.
    • ρ – плотность воздуха, единица измерения – кг/м3
    • S – площадь лопастей, на которую дует воздушный поток, единица измерения – м2 (нужно смотреть по тех. описанию производителя).
    • P – Количество кВт, которое можно получить.

    Пример расчета P = 53 * 1,25 * 33 = 5156 Вт

    Эффективность выработки электроэнергии напрямую зависит от диаметра лопастей ротора, посмотреть примерную производительность можно по таблице ниже.

    В этой таблице указаны примерные данные, которые можно получить в зависимости от диаметра ротора, высоты установки ветрогенератора и скорости ветра.

    Максимальная вырабатываемая мощность, кВт Диаметр ротора, м Высота мачты, м Скорость ветра м/с
    0,55 2,5 6 8
    2,6 3,2 9 9
    6,5 6,4 12 10
    11,2 8 12 10
    22 10 18 12

    3. В случаи с вертикальным ротором (осью) расчеты необходимо производить по другой формуле.

    • P– мощность Ватт
    • S– рабочая площадь лопастей кв.м.
    • V^3– Скорость ветра в кубе м/с

    Более сложная, но более точная формула

    • r — плотность воздуха,
    • V — скорость потока в м/с.
    • S — площадь потока в квадратных метрах
    • k — коэффициент эффективности турбины ветрогенератора в значении 0,2-0,5

    1.9 Теория идеального ветряка

    Данная теория разрабатывалась в разное время учеными и специалистами в области механики. Впервые она была разработана В.П. Ветчинкиным в 1914 году, а в качестве основы использовалась теория идеального гребного винта. В этих исследованиях был впервые выведен коэффициент использования ветряной энергии идеальным ветряком.

    Работы в этой области были продолжены Н.Е. Жуковским, который вывел максимальное значение данного коэффициента, равное 0,593. В более поздних работах другого профессора – Сабинина Г.Х. уточненное значение коэффициента составило 0,687.

    В соответствии с разработанными теориями, идеальное ветряное колесо должно обладать следующими параметрами:

    • Ось вращения колеса должна быть параллельна со скоростью ветрового потока.
    • Количество лопастей бесконечно большое, с очень малой шириной.
    • Нулевое значение профильного сопротивления крыльев при наличии постоянной циркуляции вдоль лопастей.
    • Вся сметаемая поверхность ветряка обладает постоянной потерянной скоростью воздушного потока на колесе.
    • Стремление угловой скорости к бесконечности.

    1.10 Комплектующие

    • генератор 12V — 15 у.е.;
    • ротор 1.5 м — 40 у.е.;
    • аккумулятор 12V (кислотный или гелиевый) — 15 у.е. автомобильный, 40 у.е. альтернативный;
    • металлическое большое ведро или бочка (нержавейка или алюминий) — 5 у.е.,
    • реле, чтобы заряжать аккумулятор — 3 у.е.;
    • реле лампы заряда (например, автомобильное) — 3 у.е.;
    • полугерметичный выключатель (кнопка) на 12V — 2 у.е.;
    • вольтметр (например, от любого измерительного устройства или автомобильный) — 3 у.е.;
    • наружная большая доза (распределительная коробка для присоединения проводов, а также легкого доступа ко всем соединениям) — 5 у.е.;
    • мачта с высотой от 1 до 10 метров — 35-70 у.е.;
    • провода (4 квадрата с сечением) — 5 у.е.;
    • четыре болта М6 — 3 у.е.;
    • пара больших хомутов или моток нержавеющей проволоки (крепление к мачте) — 7 у.е.;

    Необходимый инструмент: ключи, дрель со сверлами, отвертка, кусачки и т.п.

    2 Как сделать ветрогенератор своими руками

    Чтобы смонтировать это устройство в домашних условиях вам потребуется:

    Различные виды форм. В нашем случае более подходят прямоугольные или круглые

    • Доскональные знания электрика;
    • Источник питания. Это может быть генератор переменного тока или асинхронный двигатель.
    • Надежное место для установки аппарата. Так как вес отдельных бытовых агрегатов может достигать от 200 до 800 кг.
    • Ниодимовые магниты. Этот класс магнитов обладает большей производительностью;

      Различные виды форм. В нашем случае более подходят прямоугольные или круглые

    • Провода подходящего сечения;
    • Материалы для монтажа рамы и непосредственно ветряка.

    Как уже описывалось выше, существуют множество вариантов конструкций. От габаритов и способа соединения узлов зависит шумовой фон, создаваемый агрегатом. Если вы не хотите неприятностей с соседями, обсудите этот вопрос заранее, так как отдельные агрегаты работают достаточно шумно, например, как собранный своими руками ветряной генератор в следующем видео.

    После проведения всех предварительных мероприятий вам потребуется подобрать подходящий вашим потребностям источник питания. При ограниченных финансовых возможностях возможны два бюджетных варианта:

    • Автомобильный генератор;
    • Асинхронный двигатель со стиральной машины.

    2.1 Что потребуется?

    Наиболее распространённый вариант — использовать для самодельного генератора двигатель стиральной машины. Если в наличии нет старой «стиралки», найти такой движок можно у старьёвщиков на хозяйственном рынке, в ближайшем сервис-центре бытовой техники или специализированном магазине. Не проблема заказать такой двигатель из Китая.

    В основном в стиральных машинах используют бесколлекторный асинхронный движок.

    И новый, и бывший в употреблении проработают долго. Мощность на 200 ватт легко переделывается под киловатт и более.


    Материалы

    Для сборки генератора, кроме мотора, нужны:

    • неодимовые магниты размером 20, 10 и 5 мм (всего 32);
    • выпрямительные диоды или диодный мост с током на десятки ампер (соблюдайте правило двукратного запаса по мощности);
    • эпоксидный клей;
    • холодная сварка;
    • наждачка;
    • жесть от боковины консервной банки.

    Магниты заказываются по сети из Китая.




    Инструменты

    Ускорит процесс изготовления следующий инструментарий:

    • токарный станок;
    • ножницы;
    • отвёртка с насадками;
    • пассатижи.




    При отсутствии токарного станка обратитесь к знакомому, умеющему работать на таком станке.

    2.2 Вариант ветрогенератора из стиральной машины своими руками

    Пример расположения ниодимовых магнитов в двигателе от стиральной машины

    Для увеличения мощности двигатель модернизируют, заменяя ферритовые магниты на ниодимовые. Следует отметить, что установка магнитов довольно трудоемкий процесс, требующий определенных навыков.

    Пример расположения ниодимовых магнитов в двигателе от стиральной машины

    Рекомендация! Ниодимовые магниты очень мощные, будьте предельно внимательны при работе с ними.

    В целях экономии времени и нервов, более простой вариант – это покупка готового ротора подходящего размера.Рационально применять такой двигатель в устройстве с небольшими габаритами.

    2.3 Изготовление ветрогенератора своими руками из автомобильного генератора

    Этот вариант также нуждается в доработке, так как стандартный образец работает при 5000 – 6000 оборотах в минуту. В модернизацию входят:

    Шаблон расположения магнитов

    • Прибор укомплектовывается ниодимовыми магнитами. Они устанавливаются в строгом порядке, то есть полюса чередуются. Для удобства из плотного картона вырезается шаблон;

      Шаблон расположения магнитов

    • Перематывается обмотка статора. Количество витков увеличивается, следовательно, сечение провода уменьшается.
    • В стандартной комплектации нет магнитов, поэтому центральный вал нужно выполнить из немагнитного материала, например, из титана.

    Но даже при соблюдении всех требований для оптимального напряжения, ротор должен вращаться от 500 раз в минуту.

    Общие отрицательные характеристики:

    • Оба варианта недолговечны, требуют ежегодного ремонта или замены;
    • Вырабатываемой мощности не хватит на полноценное энергоснабжение;
    • Нуждаются в существенной доработке.

    Если уж вы обладаете нужными знаниями и примерно знаете, как сделать ветрогенератор на 220В своими руками более рационально будет смонтировать агрегат большей мощности.

    Один из многочисленных аварийных случаев

    При сборке горизонтального или вертикального ветрогенератора своими руками, соблюдайте жесткость всей конструкции, от лопастей до контролирующих растяжек. Ненадежные узлы конструкции могут привести к аварии.

    2.4 Как установить ветрогенератор: надежная схема мачты для крепления на высоте

    Вес рабочего колеса для нормального получения электрической энергии получается довольно приличным. На простой стойке его не установить.

    Потребуется создавать прочный бетонный фундамент под металлическую мачту и анкерные болты оттяжек. Иначе вся собранная с большим трудом конструкция может рухнуть в любой неподходящий момент времени.

    Падение ветрогенератора

    Стойка для ветрогенератора, поднятого на высоту, может быть выполнена:

    1. в виде сборной мачты, собранной из секций с раскосами;
    2. или конусной трубчатой опорой.

    Обе схемы потребуют усиления от опрокидывания за счет создания нескольких ярусов оттяжек из тросов, которые необходимы для удержания мачты при шквальных порывах ветра. Их придется надежно крепить к стопорам и анкерам.

    Из личного неудачного опыта: во время пользования аналоговым телевидением у меня работала антенна «Паутинка» с диаметром обруча 2м. Она располагалась на высоте 8 метров, была закреплена на деревянном шесте с двумя уровнями оттяжек. Шквальные порывы ветра ее раскачали так, что стойка развалилась.

    Современное цифровое телевидение, к счастью, требует использования антенн значительно меньших размеров. Их не только просто делать своими руками, но и крепить не так уж сложно.

    Сразу обратите внимание на создание прочной, безаварийной конструкции. Иначе просто повторите печальный опыт работников «ЯнтарьЭнерго», у которых во время шторма произошла авария: многотонная мачта рухнула, а осколки от лопастей разлетелись по всей округе.

    Авария ветрогенератора

    Устройство мачты потребует расчета количества материалов, необходимых для создания сооружения из стального уголка различного сечения. Форма и габариты выбираются по местным условиям.

    Устройство мачты

    Ее делают из трех или четырех вертикальных стоек. Каждая из них снизу монтируется на упор. Вверху мачты создается площадка для установки ветряка.

    Поскольку длина уголков ограничена, то мачту собирают из нескольких секций. Жесткость общему креплению придают боковые ребра, крепящиеся через раскосы.

    Обязательным элементом фундамента являются закладные металлические элементы. Они будут использоваться для крепежа деталей. Придется позаботиться о сварке и соединительных болтах.

    Телескопическую конструкцию из стальных труб соответствующего профиля собрать проще, но ее следует более тщательно рассчитать на прочность. Изгибающий момент, создаваемый тяжелой верхушкой при штормовом ветре не должен превысить критического значения.

    При этом возникнут сложности с профилактическим обслуживанием, осмотром и ремонтом собранной воздушной электростанции. Если по мачте можно подняться на высоту как по лестнице, то по трубе это сделать проблематично. Да и работать наверху очень опасно.

    Поэтому сразу необходимо продумать вариант безопасного опускания оборудования на землю и доступного способа его подъема. Это позволяет выполнить одна из двух схем с:

    1. Поворотной осью на основной опоре.
    2. Упорным рычагом на нижней части опорной стойки.

    В первом случае создается прочный фундамент для установки основной опоры. На ее оси вращения крепится сваренная трубная конструкция с ветряком и полиспастной системой на стальных тросах.

    Поворотная опора

    Снизу трубы расположен противовес, облегчающий работу по подъему и опусканию с помощью ручной лебедки.

    На картинке не показаны страховочные тросы поясов оттяжек. Они просто свисают со своих креплений вниз на землю при подъеме и опускании мачты, а к стационарным забетонированным кольям крепятся для постоянной работы.

    Схема установки и опускания ветряка по второму варианту приведена ниже.

    Схема установки

    Мачту и расположенный под прямым углом к ней упорный рычаг с противовесом, усиленный ребром жесткости, поворачивают в вертикальном направлении лебедкой с полиспастной системой.

    Ось вращения созданной конструкции находится в вершине прямого угла и закреплена в направляющих, вмонтированных в фундамент. Троса оттяжек при подъеме или опускании мачты снимают со стационарных креплений на земле. Они могут использоваться в качестве страховочных фал.

    2.5 Аккумуляторы для ветрогенератора: еще одна проблема для владельца дома

    Одна из затратных задач ветряной или солнечной электростанции — вопрос хранения электрической энергии, которую решают только аккумуляторы. Их придется покупать и обновлять, а стоимость — довольно высокая.

    Для их выбора необходимо знать рабочие характеристики: напряжение и емкость. Обычно применяются составные батареи из АКБ на 12 V, а количество ампер-часов в каждом конкретном случае стоит определить опытным путем, исходя из мощности потребителей, времени их работы.

    Выбирать аккумуляторы для ветрогенератора придется из довольно широкого ассортимента. Ограничусь не полным обзором, а только четырьмя
    популярными типами кислотных АКБ:

    1. обычные стартерный автомобильные;
    2. AGM типа;
    3. гелевые;
    4. панцирные.

    Продавцы не рекомендуют приобретать для ветростанций стартерные аккумуляторы потому, что они созданы для работы в критических условиях эксплуатации автомобиля:

    • при хранении на морозе должны выдерживать огромные токи стартера, которые создаются при раскрутке холодного двигателя;
    • во время езды подвергаются вибрациям и тряске;
    • подзарядка происходит в буферном режиме от генератора
      при движении авто с различными оборотами двигателя.
    • обслуживаемые АКБ, требующие периодического уровня электролита и доливки дистиллированной воды, созданы для выдерживания 100 циклов разряд/заряд;
    • не обслуживаемые — имеют более сложную конструкцию и количество циклов 200.

    Стартерные аккумуляторы

    Однако АКБ ветрогенератора при эксплуатации внутри дома:

    • обычно помещаются в подвальном помещении, где температура, круглогодично поддерживаемая на уровне +5÷+10 градусов, является оптимальной;
    • не подвергаются тряскам и вибрациям, стационарно
      установлены в неподвижном состоянии;
    • не получают экстремальные нагрузки при стартерном запуске, а при включении бытовых приборов через инвертор работают в щадящем режиме;
    • заряжаются от генератора небольшими токами, которые благоприятно действуют на режим десульфатации пластин.

    Все это является самыми выгодными условиями для их эксплуатации. Поэтому этот вариант предлагаю взять на заметку тем, кому не лень периодически контролировать напряжение на банках и следить за уровнем
    электролита в них.

    AGM аккумуляторы более сложные по устройству. У них такие же пластины, но кислотой пропитаны стеклянные маты, работающие одновременно диэлектрическим слоем. Их цикл разряда/заряда — 250÷400. Перезаряд опасен.

    AGM аккумулятор

    Голевые АКБ тоже создаются необслуживаемой конструкцией с герметичным корпусом и загущенным до состояния геля электролитом. Они очень не любят перезаряд, но более стойки к глубокому разряду. Число расчетных циклов —350.

    Гелевый аккумулятор

    Панцирные аккумуляторы относятся к самым современным разработкам. Их электродные пластины защищены полимерами от воздействия кислоты. Диапазон циклов эксплуатации: 900÷1500.

    Панцирные аккумуляторы

    Все эти четыре типа АКБ значительно отличаются по цене и условиям эксплуатации. Если взять во внимание рекомендации продавцов, то придется выложить довольно приличную сумму денег.

    Однако я вам рекомендую предварительно послушать полезные советы, которые дает в своем видеоролике «Как выбрать аккумуляторы для ВЭС и солнечной станции» все тот же владелец «Солнечные батареи».

    У него на этот счет свое, противоположное мнение. Как вы отнесетесь к нему — ваше личное дело. Однако, знать информацию из противоположных источников и выбрать из нее наиболее подходящий вариант: оптимальное решение для думающего человека.

    2.6 Как рассчитать экономический эффект: цена ветрогенератора

    Одним из маркетинговых ходов продавцов являются прайс листы,
    показывающие расчеты экономии покупателей, создаваемой за счет приобретения их продукции. Стоит ли им верить?

    Я предлагаю вам самостоятельно оценить экономическую выгоду от установки ветряной электростанции на вашем участке. Для этого потребуется учесть минимум расход денег на:

    1. возведение фундамента под мачту, на который пойдет немало бетона и металлический арматуры;
    2. создание высотной опоры для установки
      ветроколеса в зоне благоприятного давления ветра. Сюда войдут не только
      металлические уголки, трубы и крепежные детали со сваркой, но и затраты на весь монтаж;
    3. цену приобретения готового ветрогенератора или
      его изготовление в домашних условиях;
    4. покупку инвертора, контроллера, аккумуляторов, защитных модулей, кабелей и проводов. Учтите, что лет за 10-12 комплект АКБ придется сменить несколько раз;
    5. эксплуатационные расходы на профилактическое обслуживание и ремонт;
    6. решение ряда организационных вопросов.

    Практика использования ветряных станций показала, что тихо они не работают, а постоянные вибрации и шумы ветрогенератора раздражают ближайших соседей. Иногда придется решать вопросы через суд.

    К тому же в область вращающегося колеса иногда попадают птицы: пластиковые лопасти ломаются, металлические гнутся. Требуется надежная защита и резервный комплект запасных частей.

    Можно даже допустить, что лет 10 все будет работать надежно и эффективно, хотя про скорость ветра я объяснил довольно подробно в самом
    начале статьи.

    Когда рассчитаете все эти затраты (сделайте поправку на часть непредвиденных расходов), то прикиньте цену 1 киловатта электроэнергии, которую вы платите по счетчику сейчас.

    Умножьте ее на то количество киловатт, на которое создаете ветряную станцию, например на 3. Дальше останется определить период времени для сравнения.

    Возьмем за основу время, за которое предварительно планируете окупить свои затраты, например, 15 лет эксплуатации. Оплату 3 кВТ в час надо умножить на этот срок, выраженный в часах, и сравнить со стоимостью затрат на создание и эксплуатацию ВЭС за этот же период.

    Оценка очень приблизительная, цены плавают, но расчет для моего случая показал, что проще оплачивать электроэнергию государству. Затраты будут ниже в 4 раза.

    Считаю, что ветрогенератор для частного дома своим руками создать можно. Примеров его работы много. Однако, надо хорошо продумать целесообразность его использования, обосновать экономическую пользу.

    Без точного предварительного расчета деньги на его создание в прямом смысле могут быть пущены на ветер и не принесут никакой выгоды владельцу. Если я ошибся в прогнозах, то поправьте в комментариях.

    Учтите, что ваш опыт интересует не только меня, но и большое количество других людей. Он принесет пользу и им.

    2.7 Дополнительное электрооборудование

    Как уже было сказано выше, неотъемлемой частью ветряной электростанции является аккумулятор, берущий на себя питание потребителей. при его выборе нужно помнить, что чем больше его емкость, тем дольше он сможет поддерживать напряжение в сети, но при этом и дольше будет заряжаться. Приблизительное время работы можно определить как то время, за которое исчерпается половина емкости аккумулятора (после этого падение напряжения станет уже ощутимым, кроме того, глубокий разряд снижает ресурс свинцово-кислотных батарей).

    Пример:Так, аккумулятор емкостью 65 А*ч условно сможет отдавать в нагрузку 30-35 ампер-часов энергии. Много это или мало? Обычная лампа освещения мощностью 60 ватт потребует, с учетом наличия инвертора, преобразующего 12 В постоянного тока в 220 В переменного и имеющего собственный КПД в пределах 70%, тока в 7 ампер — это чуть больше четырех часов работы. Восстанавливать же растраченную энергию наш ветряк с условной мощностью 90 ватт даже в лучшем случае, при постоянном сильном ветре, будет не менее пяти часов. Как вы видите, при использовании ветрогенератора исключительно как автономного источника энергии электричество в вашем доме будет доступным лишь на несколько часов в день.

    Вторым узлом системы электроснабжения становится инвертор. В нашем случае можно использовать как готовый автомобильный, так и извлеченный из источника бесперебойного питания. В любом случае важно не перегружать его потреблением тока, учитывая, что реальная эксплуатационная мощность его в 1,2-1,5 раза меньше указываемой максимальной мощности.

    Как вы можете видеть, привлекательность использования даровой энергии упирается во многочисленные ограничения, и даже единственный эффективный в средней полосе России вариант — ветрогенератор — неспособен обеспечивать длительную автономность.

    Но вместе с тем эта идея неплоха и как источник аварийного электропитания и, особенно, как конструкторская задача — удовольствие от создания своими руками ветрогенераторной установки может в разы превосходить ее мощность.

    2.8 Видео: ветрогенератор 24В 2500Ватт своими руками

    3 Сборка аксиальной ВЭУ на неодимовых магнитах

    Поскольку неодимовые магниты в России появились относительно недавно, то и аксиальные ветрогенераторы с безжелезными статорами стали делать не так давно.

    Аксиальная ВЭУ

    Появление магнитов вызвало ажиотажный спрос, но постепенно рынок насытился, и стоимость этого товара стала снижаться. Он стал доступен для умельцев, которые тут же приспособили его для своих разнообразных нужд.

    Аксиальная ВЭУ на неодимовых магнитах с горизонтальной осью вращения – более сложная конструкция, требующая не только умения, но и определенных знаний

    Если у вас имеется ступица от старого авто с тормозными дисками, то её и возьмем в качестве основы будущего аксиального генератора.

    Автомобильная ступица с тормозными дисками

    Предполагается, что эта деталь не новая, а уже эксплуатировавшаяся. В этом случае её необходимо разобрать, проверить и смазать подшипники, тщательно вычистить прочь осадочные наслоения и всю ржавчину. Готовый генератор не забудьте покрасить.

    Ступица с тормозными дисками, как правило, достаётся умельцам в качестве одного из узлов старого автомобиля, отправившегося в утиль, поэтому нуждается в тщательной чистке

    3.1 Что необходимо подготовить?

    За основу аксиального генератора нужно взять ступицу от автомобиля с тормозными дисками. Если эта деталь была в эксплуатации, её необходимо разобрать, подшипники поверить и смазать, ржавчину счистить. Готовый генератор будет покрашен.

    Ступица

    Чтобы качественно отчистить ступицу от ржавчины, воспользуйтесь металлической щеткой, которую можно насадить на электродрель. Ступица снова будет выглядеть отлично

    3.2 Распределение и закрепление магнитов

    Неодимовые магниты должны быть наклеены на диски ротора. Для нашей работы возьмем 20 магнитов 25×8мм.

    Конечно, можно использовать и другое количество полюсов, но при этом необходимо соблюдать следующие правила: количество магнитов и полюсов в однофазном генераторе должно совпадать, но, если речь идёт о трехфазной модели, то соотношение полюсов к катушкам должно составлять 2/3 или 4/3.

    При размещении магнитов полюса чередуются. Важно не ошибиться. Если вы не уверены, что расположите элементы правильно, сделайте шаблон-подсказку или нанесите сектора прямо на сам диск.

    Если у вас есть выбор, купите лучше не круглые, а прямоугольные магниты. В прямоугольных моделях магнитное поле сосредоточено по всей длине, а в круглых – в центре.

    У противостоящих магнитов должны быть разные полюса. Вы ничего не перепутаете, если с помощью маркера пометите их знаками минус или плюс. Чтобы определить полюса, возьмите магниты и поднесите их друг к другу.

    Подготовка к закреплению магнитов

    Если поверхности притягиваются, поставьте на них плюс, если отталкиваются, то пометьте их минусами. При размещении магнитов на дисках чередуйте полюса.

    Магниты установлены с соблюдением правила чередования полисов, по наружному и внутреннему периметрам расположены бортики из пластилина: изделие готово к заливке эпоксидной смолой

    Для надежности закрепления магнита нужно применять качественный и максимально сильный клей.

    Чтобы усилить надежность фиксации, можно воспользоваться эпоксидной смолой. Её следует развести так, как это указано в инструкции, и залить ею диск. Смола должна покрыть диск целиком, но не стекать с него. Предотвратить вероятность стекания можно, если обмотать диск скотчем или сделать по его периметру временные пластилиновые ограждения из полимерной полосы.

    3.3 Генераторы однофазного и трехфазного вида

    Если сравнивать однофазный и трехфазный статоры, то последний окажется лучше. Однофазный генератор при нагрузке вибрирует. Причиной вибрации становится разница в амплитуде тока, возникающая из-за непостоянной его отдачи за момент времени.

    Такого недостатка у трехфазной модели нет. Она отличается постоянной мощностью из-за компенсирующих друг друга фаз: когда в одной происходит нарастание тока, в другой он падает.

    По итогам тестирования отдача трехфазной модели почти на 50% больше, чем аналогичный показатель однофазной. Ещё одним достоинством этой модели является то, что в отсутствии лишней вибрации повышается акустический комфорт при функционировании устройства под нагрузкой.

    Трехфазный и однофазный генераторы

    То есть, трехфазный генератор практически не гудит в процессе его эксплуатации. Когда вибрация снижается, срок службы устройства логично повышается.

    В борьбе между трехфазными и однофазными устройствами неизменно побеждает трехфазное, потому что оно не так сильно гудит в процессе работы и служит дольше однофазного

    3.4 Правила наматывания катушки

    Если спросить специалиста, то он скажет, что перед тем, как наматывать катушки, нужно выполнить тщательный расчет. Практик в этом вопросе положится на свою интуицию.

    Мы выбрали не слишком скоростной вариант генератор. У нас процедура зарядки двенадцативольтового аккумулятора должна начаться при 100-150 оборотах за минуту. Такие исходные данные требуют, чтобы общее количество витков всех катушек составило 1000—1200 штук. Эту цифру нам осталось поделить между всеми катушками и определить, сколько же витков будет на каждой.

    Ветряк на низких оборотах может быть мощнее, если увеличится количество полюсов. Частота колебаний тока в катушках при этом увеличится. Если для намотки катушек применять провод большего сечения, сопротивление уменьшится, а сила тока увеличится. Не упустите из виду тот факт, что большее напряжение может «съедать» ток из-за сопротивления обмотки.

    Станок для намотки катушек

    Процесс намотки можно облегчить и сделать эффективнее, если использовать для этой цели специальный станочек.

    Совсем необязательно такой рутинный процесс как наматывание катушек делать вручную. Немного смекалки и отличный станочек, который легко справляется с намоткой, уже есть

    На рабочие характеристики самодельных генераторов большое влияние оказывают толщина и количество магнитов, которые расположены на дисках. Совокупную итоговую мощность можно рассчитать, если намотать одну катушку, а затем прокрутить её в генераторе. Будущая мощность генератора определяется путем измерения напряжения на конкретных оборотах без нагрузки.

    Приведем пример. При сопротивлении 3 Ом и 200 оборотах в минуту выходит 30 вольт. Если отнять от этого результата 12 вольт напряжения аккумулятора, получится 18 вольт. Делим этот результат на 3 Ом и получаем 6 ампер. Объём в 6 ампер и отправится на аккумулятор. Конечно, в расчете мы не учли потери в проводах и на диодном мосту: фактический результат окажется меньше расчетного.

    Катушки

    Обычно катушки делают круглыми. Но, если их немного вытянуть, то получится больше меди в секторе и витки окажутся прямее. Если сравнивать размер магнита и диаметр внутреннего отверстия катушек, то они должны соответствовать друг другу или размер магнита может быть немного меньше.

    Уже готовые катушки должны соответствовать своими размерами магнитам: они должны быть чуть больше магнитов или равной с ними величины

    Толщина статора, который мы делаем, должна правильно соотноситься с толщиной магнитов. Если статор сделать больше за счет увеличения количества витков в катушках, междисковое пространство возрастет, а магнитопоток уменьшится. Результат же может оказаться таким: образуется такое же напряжение, но, из-за увеличившегося сопротивления катушек, мы получим меньший ток.

    Для изготовления формы для статора применяют фанеру. Впрочем, сектора для катушек можно разметить на бумаге, используя в качестве бордюров пластилин.

    Если поверх катушек на дно формы поместить стеклоткань, прочность изделия повысится. Перед нанесением эпоксидной смолы нужно форму смазать вазелином или воском, тогда смола не прилипнет к форме. Некоторые используют вместо смазки скотч или пленку.

    Между собой катушки закрепляются неподвижно. При этом концы фаз выводятся наружу. Шесть выведенных наружу проводов следует соединить звездой или треугольником. Вращая собранный генератор рукой, производят его тестирование. Если напряжение будет 40 V, то сила тока составит примерно 10 ампер.

    3.5 Окончательная сборка устройства

    Длина готовой мачты должна составлять примерно 6-12 метров. При таких параметрах её основание должно быть забетонированным. Сам ветряк будет закреплен на верхней части мачты.

    Окончательный монтаж

    Чтобы до него можно было добраться в случае поломки, нужно предусмотреть в основании мачты специальное крепление, которое позволит поднимать и опускать трубу, используя при этом ручную лебедку.

    Высоко вздымается мачта с прикрепленным к ней ветрогенератором, но предусмотрительный мастер сделал специальное устройство, которое позволяет при необходимости опустить конструкцию на землю

    Чтобы изготовить винт, можно использовать трубу ПВХ диаметром 160 мм. Она будет использоваться для вырезания из её поверхности двухметрового винта, состоящего из шести лопастей. Форму лопастей лучше разработать самостоятельно опытным путем. Цель – усилить крутящий момент при низких оборотах.

    Винт-пропеллер следует беречь от слишком сильного ветра. Для решения этой задачи используют складной хвост. Выработанная энергия накапливается в аккумуляторах.

    Вниманию наших читателей мы предоставили два варианта ветрогенераторов, сделанных своими руками на 220 в, которые пользуются повышенным вниманием не только владельцев загородной недвижимости, но и простых дачников.

    Обе модели ВЭУ эффективны по-своему. Особенно хорошие результаты эти устройства способны продемонстрировать в степной местности с частыми и сильными ветрами. Они достаточно эффективны, чтобы использоваться в организации альтернативного отопления дома и в поставке электроэнергии. И их не так уж сложно соорудить своими руками.

    3.6 Заключительный этап — мачта и винт

    Фактическая высота готовой мачты составила 6 метров, но лучше было бы сделать её 10-12 метров. Основание для неё нуждается в бетонировании. Необходимо сделать такое крепление, чтобы трубу можно было поднимать и опускать при помощи ручной лебедки. На верхнюю часть трубы крепится винт.

    Винт

    Труба ПВХ – надежный и достаточно легкий материал, используя который можно сделать винт ветряка с заранее предусмотренным изгибом

    Для изготовления винта нужна ПВХ труба, диаметр которой составляет 160 мм. Из неё предстоит вырезать шестилопастной двухметровый винт. С формой лопастей имеет смысл поэкспериментировать, чтобы усилить крутящий момент на низких оборотах. От сильного ветра винт нужно уводить. Эта функция выполняется с помощью складывающегося хвоста. Выработанная энергия копится в аккумуляторах.

    Установка мачты

    Мачта должна подниматься и опускаться с помощью ручной лебедки. Дополнительную устойчивость конструкции можно придать, используя натяжные тросы

    Вашему вниманию предоставлены два варианта ветрогенераторов, которые чаще всего используются дачниками и владельцами загородной недвижимости. Каждый из них по-своему эффективен. Особенно результат применения такого оборудования проявляется в местности с сильными ветрами. В любом случае, такой помощник в хозяйстве не помешает никогда.

    4 Ветрогенератор с вертикальной осью вращения

    В ветряных генераторах данного вида вращающаяся ось генератора расположена вертикально по отношению к поверхности земли.

    5464.jpg

    За годы использования устройств данного вида появились разнообразные конструкции которые объединены в группы, это:

    С ротором Дарье — агрегаты оснащаются двумя или тремя лопастями, изогнутыми в форме овала.

    К положительным особенностям данной конструкции можно отнести:

    • Самостоятельную ориентацию по отношению к воздушным потокам;
    • Удобное обслуживание установки.
    • Простота схемы агрегата.

    К отрицательным относятся:

    • Нет возможности в самостоятельной раскрутке лопастей;
    • Значительная нагрузка на элементы конструкции;
    • Лопасти должны быть идентичны и соответствовать заданному профилю;
    • Повышенный уровень шума в процессе работы.
    • С ротором Савониуса – агрегаты оснащены лопастями в виде цилиндрических поверхностей.

    Достоинствами данной группы являются:

    • Для запуска в работу требуются незначительные потоки ветра;
    • Способность быстрого набора крутящего момента;
    • Надёжность конструкции;
    • Низкая стоимость.

    К недостаткам можно отнести:

    • Низкий КПД устройств этой группы.

    Устройства с ротором Савониуса применяют при монтаже комбинированных ветровых генераторов, их используют для разгона агрегатов с ротором Дарье.

    С вертикально-осевой конструкций ротора — у агрегатов этой группы лопасти напоминают форму крыла самолета и расположены вертикально, ось ротора расположена параллельна валу.

    По внешнему виду агрегаты данной группы похожи на устройства с ротором Дарье.

    464.jpg

    К положительным качествам устройств относятся:

    1. Простота в изготовлении;
    2. Способность быстрого набора скорости вращения;
    3. Низкий уровень шума.
    4. Надежность в работе.
    5. С геликоидным ротором – агрегаты этой группы являются более развитым вариантом устройств с вертикально-осевым ротором. Лопасти имеют форму геликоидной кривой.
    1. Более низкие нагрузки на элементы конструкции;
    2. Быстрый набор скорости вращения.
    • Повышенный уровень шума;
    • Высокая стоимость.
    • Многолопастный ротор – в основу агрегатов этого типа положена вертикально-осевая конструкция с устройством дополнительного внешнего кольца неподвижных лопастей.

    Достоинства агрегатов данной группы:

    • Более высокий КПД установок;
    • Чувствительность к потокам ветра.
    • Высокая стоимость;
    • Повышенный уровень шума.

    4.1 ВС

    На первой позиции – самый простейший, чаще всего называемый ротором Савониуса. На самом деле его изобрели в 1924 г. в СССР Я. А. и А. А. Воронины, а финский промышленник Сигурд Савониус бессовестно присвоил себе изобретение, проигнорировав советское авторское свидетельство, и начал серийный выпуск. Но внедрение в судьбе изобретения значит очень много, поэтому мы, чтобы не ворошить прошлое и не тревожить прах усопших, назовем этот ветряк ротором Ворониных-Савониуса, или для краткости, ВС.

    ВС для самодельщика всем хорош, кроме «паровозного» КИЭВ в 10-18%. Однако в СССР над ним работали много, и наработки есть. Ниже мы рассмотрим усовершенствованную конструкцию, не намного более сложную, но по КИЭВ дающую фору лопастникам.

    Примечание: двухлопастный ВС не крутится, а дергается рывками; 4-лопастный лишь немного плавнее, но много теряет в КИЭВ. Для улучшения 4-«корытные» чаще всего разносят на два этажа – пара лопастей внизу, а другая пара, повернутая на 90 градусов по горизонтали, над ними. КИЭВ сохраняется, и боковые нагрузки на механику слабеют, но изгибные несколько возрастают, и при ветре более 25 м/с у такой ВСУ на древке, т.е. без растянутого вантами подшипника над ротором, «срывает башню».

    4.2 Дарье

    Следующий – ротор Дарье; КИЭВ – до 20%. Он еще проще: лопасти – из простой упругой ленты безо всякого профиля. Теория ротора Дарье еще недостаточно разработана. Ясно только, что начинает он раскручиваться за счет разности аэродинамического сопротивления горба и кармана ленты, а затем становится вроде как быстроходным, образуя собственную циркуляцию.

    Вращательный момент мал, а в стартовых положениях ротора параллельно и перпендикулярно ветру вообще отсутствует, поэтому самораскрутка возможна только при нечетном количестве лопастей (крыльев?) В любом случае на время раскрутки нагрузку от генератора нужно отключать.

    Есть у ротора Дарье еще два нехороших качества. Во-первых, при вращении вектор тяги лопасти описывает полный оборот относительно ее аэродинамического фокуса, и не плавно, а рывками. Поэтому ротор Дарье быстро разбивает свою механику даже при ровном ветре.

    Во-вторых, Дарье не то что шумит, а вопит и визжит, вплоть до того, что лента рвется. Происходит это вследствие ее вибрации. И чем больше лопастей, тем сильнее рев. Так что Дарье если и делают, то двухлопастными, из дорогих высокопрочных звукопоглощающих материалов (карбона, майлара), а для раскрутки посередине мачты-древка приспосабливают небольшой ВС.

    4.3 Ортогонал

    На поз. 3 – ортогональный вертикальный ротор с профилированными лопастями. Ортогональный потому, что крылья торчат вертикально. Переход от ВС к ортогоналу иллюстрирует рис. слева.

    vetrogenerator_svoimi_rukami_chertezhi-_izgotovlenie-_generator_dlya_vetryaka_7.jpg

    Карусельный и ортогональный роторы

    Угол установки лопастей относительно касательной к окружности, касающейся аэродинамических фокусов крыльев, может быть как положительным (на рис.), так и отрицательным, сообразно силе ветра. Иногда лопасти делают поворотными и ставят на них флюгерки, автоматически держащие «альфу», но такие конструкции часто ломаются.

    Центральное тело (голубое на рис.) позволяет довести КИЭВ почти до 50%. В трехлопастном ортогонале оно должно в разрезе иметь форму треугольника со слегка выпуклыми сторонами и скругленными углами, а при большем количестве лопастей достаточно простого цилиндра. Но теория для ортогонала оптимальное количество лопастей дает однозначно: их должно быть ровно 3.

    Ортогонал относится к быстроходным ветрякам с ОСС, т.е. обязательно требует раскрутки при вводе в эксплуатацию и после штиля. По ортогональной схеме выпускаются серийные необслуживаемые ВСУ мощностью до 20 кВт.

    4.4 Геликоид

    Геликоидный ротор, или ротор Горлова (поз. 4) – разновидность ортогонала, обеспечивающая равномерное вращение; ортогонал с прямыми крыльями «рвет» лишь немного слабее двухлопастного ВС. Изгиб лопастей по геликоиде позволяет избежать потерь КИЭВ из-за их кривизны. Хотя часть потока кривая лопасть и отбрасывает, не используя, но зато и загребает часть в зону наибольшей линейной скорости, компенсируя потери. Геликоиды используют реже прочих ветряков, т.к. они вследствие сложности изготовления оказываются дороже равных по качеству собратьев.

    4.5 Бочка-загребушка

    На 5 поз. – ротор типа ВС, окруженный направляющим аппаратом; его схема представлена на рис. справа. В промышленном исполнении встречается редко, т.к. дорогостоящий отвод земли не компенсирует прироста мощности, а материалоемкость и сложность производства велики. Но самодельщик, боящийся работы – уже не мастер, а потребитель, и, если нужно не более 0,5-1,5 кВт, то для него «бочка-загребушка» лакомый кусок:

    vetrogenerator_svoimi_rukami_chertezhi-_izgotovlenie-_generator_dlya_vetryaka_8.jpg

    Вертикальный ротор с направляющим аппаратом

    • Ротор такого типа абсолютно безопасен, бесшумен, не создает вибраций и может быть установлен где угодно, хоть на детской площадке.
    • Согнуть «корыта» из оцинковки и сварить каркас из труб – работа ерундовая.
    • Вращение – абсолютно равномерное, детали механики можно взять самые дешевые или из хлама.
    • Не боится ураганов – слишком сильный ветер не может протолкнуться в «бочку»; вокруг нее возникает обтекаемый вихревой кокон (мы с этим эффектом еще столкнемся).
    • А самое главное – поскольку поверхность «загребушки» в несколько раз больше таковой ротора внутри, КИЭВ может быть и сверхединичным, а вращательным момент уже при 3 м/с у «бочки» трехметрового диаметра такой, что генератору на 1 кВт с предельной нагрузкой, как говорится, лучше и не дергаться.

    4.6 Видео: ветрогенератор Ленца

    4.7 Подготовка элементов

    Чтобы сделать лопасти для вертикального ветрогенератора, понадобится качественный пластик и/или жесть. Например, лопастную конструкцию можно сделать из пластиковых труб, Тогда к каждой стороне трубы крепятся полукруглые жестяные фрагменты. Высота и радиус вращения должны достигать 70 см. Или же можно изготовить лопастную конструкцию из запчастей.

    1c6030efdb32dc837e6a7063c6e019fc-1024x683.jpg

    Для ротора нужны 2 ферритовых диска диаметром 32 см, 6 неодимовых магнитов и клей. Роторная система состоит из двух дисков. Схема каждого диска следующая: нужно так расположить магниты, чтобы их полярность чередовалась, угол между ними составлял 60 градусов, а диаметр размещения равнялся 16,5 см. После правильного размещения магниты заливаются клеем.

    Для статора нужно сделать девять катушек с 60 витками медной проволоки диаметром 0,1 см. Чтобы сделать три фазы, катушки необходимо спаять между собой в следующем порядке:

    1. Для первой фазы начало 1-ой катушки соединяем с концом 4-ой, а начало 4-ой с концом 7-ой;
    2. Для второй фазы делаем то же самое, но начинаем со 2-ой катушки;
    3. Для изготовления третьей фазы начинаем с 3-ей катушки.

    Форму для катушек делают из фанеры и выкладывают стекловолокном. После размещения фаз их нужно залить клеем и оставить сохнуть на несколько дней.

    4.8 Монтаж конструкции

    Когда с изготовлением составных элементов покончено, можно приступать к их соединению между собой. Сначала нужно соединить ротор и статор:

    • В верхнем диске ротора сделайте отверстия для четырех шпилек.
    • В статоре сделайте отверстия для крепления к подставке.
    • Положите нижний диск ротора на подставку магнитами вверх.
    • На нижнем роторе разместите статор и уприте шпильки в алюминиевую пластину.
    • Накройте конструкцию вторым роторным диском (магниты расположены внизу).
    • При помощи вращения шпилек добейтесь равномерного сближения верхнего и нижнего роторных дисков, после этого шпильки и пластину аккуратно убирают.
    • Зафиксируйте генератор гайками.

    Готовый генератор прикрутите к осевой мачте. После этого к генератору можно прикреплять лопастную конструкцию. Теперь ваш ветряк готов к установке! Для установки ветряка подготовьте армированный фундамент и зафиксируйте конструкцию растяжкой.

    В последнюю очередь подключается электросеть в следующем порядке: энергия от генератора попадает на контроллер, затем собирается на аккумуляторе, а потом преобразуется в переменный ток при помощи инвертора.

    5 Рекомендации

    Самодельный ветряк для частного дома вырабатывает постоянное или переменное напряжение от нескольких десятков вольт, представляющее для человека повышенную опасность. Токоведущие контакты и провода должны быть надёжно заизолированы — дождевая вода является подкисленной средой, неплохо проводящей электрический ток.

    Работы на токарном станке или болгарке выполняются в защитных очках и перчатках. Запрещается собирать схему при работающем ветряке.

    Энергия ветра непостоянна. Лучшим решением окажется тихоходный генератор, имеющий не один десяток магнитов и катушек. Чем больше катушек – тем толще должен быть обмоточный провод. Слишком тонкое сечение из-за суммарного сопротивления в десятки ом снизит полезную мощность генератора ещё в несколько раз. Для серьёзной нагрузки – например, от электроплиты или стиральной машины – при 220 вольтах потребуется ток до 10 А.

    Конструкция самодельного генератора – если не используется переделанный под выработку электричества двигатель – должна быть идеально ровной и симметричной. Перед монтажом катушек и магнитов сама «вертушка» должна быть отцентрована. Не имеет значения, что используется – отслужившие своё компакт-диски или самодельная уменьшенная копия ветряной мельницы, малейший дисбаланс уже недопустим.

    Старайтесь добиться минимального шума – в идеале он должен отсутствовать. Если на вашу, не смазанную в месте подшипников установку пожалуются из-за постоянного скрипа и стука при вращении, подобная жалоба может повлечь проблемы с законом, особенно ночью. Остальные поводы заявить на вас как на владельца ветроустановки незначительны – ветряки полностью законны, т. к. владелец данного устройства не производит с его помощью электричество в промышленных масштабах, как это делают в Европе и Америке.

    Установка не должна оказаться слишком высокой – выше столбов, по которым проходят ЛЭПы. В каждом городе, дачном посёлке или сельском поселении действует ограничение на высоту сооружаемых конструкций.

    Например, чтобы поставить 40-метровую башню для сотовой базовой станции, требуется ряд разрешений и проверок со стороны регулирующих госструктур. То же самое относится к ветрякам.

    Правильно и крайне ответственно подойдя к решению проблемы с электричеством при помощи ветрогенератора, потребитель избавится от простоев, связанных с перебоями электроснабжения. Всегда лучше сработать на опережение – в рамках закона – чем годами ждать обещанного властями.

    6 Итог

    Ветряные генераторы хоть и сложны в устройстве и требуют постоянного внимания, незаменимы в отдаленных от линии ЛЭП местах, как альтернативный источник электроэнергии. Совершенно безопасный с экологической точки зрения. Следовательно, мы надеемся, что, прочитав эту статью и просмотрев видео-инструкцию, вы сможете сделать ветрогенератор на 220В своими руками как вертикальный, так и горизонтальный и обеспечить свое жилье альтернативным источником электроэнергии.

    • https://zetsila.ru/%D0%B2%D0%B5%D1%82%D1%80%D0%BE%D0%B3%D0%B5%D0%BD%D0%B5%D1%80%D0%B0%D1%82%D0%BE%D1%80-%D1%81%D0%B2%D0%BE%D0%B8%D0%BC%D0%B8-%D1%80%D1%83%D0%BA%D0%B0%D0%BC%D0%B8/
    • https://sovet-ingenera.com/eco-energy/generators/vetrogenerator-svoimi-rukami.html
    • https://220v.guru/vse-ob-elektroenergii/energiya-vetra/kak-sdelat-samodelnyy-vetrogenerator-na-220-v-4-kvt.html
    • https://odstroy.ru/vetrogenerator-svoimi-rukami-samyj-prostoj-sposob-po-sozdaniu-vetrogeneratora/
    • https://aquatic-home.ru/kak-sdelat-vetrogeneratorna-220v-svoimi-rukami.html
    • https://stroy-podskazka.ru/generatory/vetro-svoimi-rukami/
    • https://ElectrikBlog.ru/vetrogenerator-dlya-chastnogo-doma-svoimi-rukami/
    • https://generatorexperts.ru/alternativnye-istochniki/vetryanoj-svoimi-rukami.html
    • https://aqua-rmnt.com/otoplenie/alt_otoplenie/vetrogenerator-svoimi-rukami.html
    • https://remont-system.ru/alternativnaya-energiya/kak-sdelat-vertikalnyy-vetrogenerator-svoimi-rukami

    Источник https://nova-sun.ru/vetryaki/montazh/vetrogenerator-iz-motor-kolesa

    Источник https://uteplimvse.ru/interesnye-stati/vetrogenerator-svoimi-rukami-samyj-prostoj-sposob-po-sozdaniyu-vetrogeneratora.html

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *